Những câu hỏi liên quan
H24
Xem chi tiết
DH
Xem chi tiết
LD
6 tháng 10 2020 lúc 12:27

ĐK : x ∈ Q

Đặt x2 + x + 6 = k2 ( k ∈ N )

=> 4( x2 + x + 6 ) = 4k2

=> 4x2 + 4x + 24 = 4k2

=> ( 4x2 + 4x + 1 ) + 23 = 4k2

=> ( 2x + 1 )2 + 23 = 4k2

=> 4k2 - ( 2x + 1 )2 - 23 = 0

=> ( 2k )2 - ( 2x + 1 )2 = 23

=> ( 2k - 2x - 1 )( 2k + 2x + 1 ) = 23

Xét các trường hợp : 

1. \(\hept{\begin{cases}2k-2x-1=1\\2k+2x+1=23\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\k=6\end{cases}}\)( tm )

2. \(\hept{\begin{cases}2k-2x-1=-1\\2k+2x+1=-23\end{cases}}\Leftrightarrow x=k=-6\)( tm )

3. \(\hept{\begin{cases}2k-2x-1=23\\2k+2x+1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-6\\k=6\end{cases}}\)( tm )

4. \(\hept{\begin{cases}2k-2x-1=-23\\2k+2x+1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\k=-6\end{cases}}\)( tm )

=> x ∈ { 5 ; -6 } thì x2 + x + 6 là một số chính phương

Bình luận (0)
 Khách vãng lai đã xóa
LD
6 tháng 10 2020 lúc 12:28

mình nhầm ĐK của k ; k ∈ Z nhé :v 

Bình luận (0)
 Khách vãng lai đã xóa
LD
6 tháng 10 2020 lúc 12:35

thôi cho mình sửa lại cả bài ._. làm ăn chán quá :v 

x ∈ Q

Đặt x2 + x + 6 = k2 ( k ∈ N )

=> 4( x2 + x + 6 ) = 4k2

=> 4x2 + 4x + 24 = 4k2

=> ( 4x2 + 4x + 1 ) + 23 = 4k2

=> ( 2x + 1 )2 + 23 = 4k2

=> 4k2 - ( 2x + 1 )2 - 23 = 0

=> ( 2k )2 - ( 2x + 1 )2 = 23

=> ( 2k - 2x - 1 )( 2k + 2x + 1 ) = 23

Xét các trường hợp :

1. \(\hept{\begin{cases}2k-2x-1=1\\2k+2x+1=23\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\k=6\end{cases}\left(tm\right)}\)

2. \(\hept{\begin{cases}2k-2x-1=-1\\2k+2x+1=-23\end{cases}}\Leftrightarrow x=k=-6\left(ktm\right)\)

3. \(\hept{\begin{cases}2k-2x-1=23\\2k+2x+1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-6\\k=6\end{cases}\left(tm\right)}\)

4. \(\hept{\begin{cases}2k-2x-1=-23\\2k+2x+1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\k=-6\end{cases}\left(ktm\right)}\)

=> x ∈ { -6 ; 5 } thì x2 + x + 6 là một SCP

Lần đầu làm dạng này nên hơi nhiều thiếu xót :<

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
NT
7 tháng 7 2017 lúc 15:47

để x2+x+1991 là số chính phương

=>x2+x là stn

=>x là số nguyên

đặt x2+x+1991=a2

=>4x2+4x+1991.4=4a2

=>(2x+1)2+7963=4a2

=>(2a-2x-1)(2a+2x+1)=7963

từ đó tìm x là được

Bình luận (0)
NN
11 tháng 9 2017 lúc 19:53

x hữu tỷ mà

Bình luận (0)
ND
Xem chi tiết
ND
2 tháng 8 2017 lúc 21:21

\(\frac{41}{12}\)

Bình luận (0)
NH
Xem chi tiết
H9
28 tháng 6 2023 lúc 15:40

Bài 11: 

Ta có: \(x=\dfrac{-101}{a+7}\) nguyên khi \(-101⋮a+7\)

Vậy: \(a+7\inƯ\left(101\right)\)

\(Ư\left(101\right)=\left\{101;1;-101;-1\right\}\)

\(a+7\in\left\{101;1;-101;-1\right\}\)

\(\Rightarrow a\in\left\{94;-108;-6;-8\right\}\)

Vậy x sẽ nguyên khi \(a\in\left\{94;-108l-6;-8\right\}\)

Bài 12:

Ta có: \(t=\dfrac{3x+8}{x-5}=\dfrac{3x+15-7}{x-5}=\dfrac{3\left(x+5\right)-7}{x-5}=3+\dfrac{7}{x-5}\)

t nguyên khi \(\dfrac{7}{x+5}\) nguyên tức là \(x-5\inƯ\left(7\right)\) 

\(Ư\left(7\right)=\left\{-7;7;-1;1\right\}\)

\(\Rightarrow x-5\in\left\{-7;7;-1;1\right\}\)

\(\Rightarrow x\in\left\{12;-2;4;6\right\}\)

Vậy t sẽ nguyên khi \(x\in\left\{12;-2;4;6\right\}\)

Bình luận (0)
LH
Xem chi tiết
TQ
Xem chi tiết
2T
30 tháng 8 2019 lúc 11:22

1) \(a+b+c=0\Rightarrow2\left(a+b+c\right)=0\Rightarrow\frac{2\left(a+b+c\right)}{abc}=0\)

\(\Rightarrow M=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(\Rightarrow M=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{yz}+\frac{2}{zx}+\frac{2}{xy}\)

\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

Bình luận (0)
ST
Xem chi tiết
NP
Xem chi tiết