Những câu hỏi liên quan
TD
Xem chi tiết
GB
Xem chi tiết
AH
30 tháng 1 2021 lúc 0:48

Lời giải:ĐK: $x>3$

Ta có BĐT quen thuộc: $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$

Do đó:

$|x^2-2|+|2-\sqrt{x-3}|\geq |x^2-2+2-\sqrt{x-3}|=|x^2-\sqrt{x-3}|$

Dấu "=" xảy ra khi:

$(x^2-2)(2-\sqrt{x-3})\geq 0$

$\Leftrightarrow 2-\sqrt{x-3}\geq 0$ (do $x>3$)

$\Leftrightarrow x< 7$

Vậy $7>x> 3$ thì dấu "=" xảy ra. Nghĩa là nghiệm của BPT là 

$[7;+\infty)\cup (-\infty;3]$

Bình luận (0)
AH
30 tháng 1 2021 lúc 0:49

Lời giải:ĐK: $x>3$

Ta có BĐT quen thuộc: $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$

Do đó:

$|x^2-2|+|2-\sqrt{x-3}|\geq |x^2-2+2-\sqrt{x-3}|=|x^2-\sqrt{x-3}|$

Dấu "=" xảy ra khi:

$(x^2-2)(2-\sqrt{x-3})\geq 0$

$\Leftrightarrow 2-\sqrt{x-3}\geq 0$ (do $x>3$)

$\Leftrightarrow x< 7$

Vậy $7>x> 3$ thì dấu "=" xảy ra. Nghĩa là nghiệm của BPT là 

$[7;+\infty)\cup (-\infty;3]$

Bình luận (0)
H24
Xem chi tiết
HM
Xem chi tiết
NL
15 tháng 3 2022 lúc 23:28

ĐKXĐ: \(\left[{}\begin{matrix}x=0\\x\ge3\end{matrix}\right.\)

Với \(x=0\) là nghiệm

Với \(x\ge3\), chia 2 vế cho \(\sqrt{x}\) ta được:

\(\sqrt{x+1}+\sqrt{x+2}=\sqrt{x-3}\)

\(\Leftrightarrow\sqrt{x+1}+\sqrt{x+2}-\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x+1}+\dfrac{5}{\sqrt{x+2}+\sqrt{x-3}}=0\) (vô nghiệm do vế trái luôn dương)

Vậy pt có nghiệm duy nhất \(x=0\)

Bình luận (0)
VS
Xem chi tiết
AN
11 tháng 9 2018 lúc 16:39

Đặt \(\hept{\begin{cases}\sqrt[3]{2-x}=a\\\sqrt[3]{x+7}=b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a^2+b^2-ab=3\\a^3+b^3=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a^2+b^2-ab=3\\\left(a+b\right)\left(a^2-ab+b^2\right)=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a^2+b^2-ab=3\\a+b=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=2\end{cases}}\)hoặc \(\hept{\begin{cases}a=2\\b=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-6\end{cases}}\) 

Bình luận (0)
ND
Xem chi tiết
TN
Xem chi tiết
ND
Xem chi tiết
LP
3 tháng 9 2023 lúc 22:03

1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)

Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)

\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)

\(P\ge4\sqrt{xy}\left(x+y\right)^2\)

Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\)  (*)

Thật vậy, (*)

\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)

\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)

\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)

Áp dụng BĐT Cô-si, ta được:

VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)

Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\)

Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)

 Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)

Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)

Bình luận (0)
H24
Xem chi tiết
HP
6 tháng 1 2021 lúc 18:33

ĐK: \(x\ge1\)

\(pt\Leftrightarrow2\sqrt{\left(x-1\right)\left(x+2\right)}-\sqrt{x-1}-6\sqrt{x+2}+3=0\)

\(\Leftrightarrow\left(2\sqrt{x+2}-1\right)\left(\sqrt{x-1}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x+2}=1\\\sqrt{x-1}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4\left(x+2\right)=1\\x-1=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{4}\left(l\right)\\x=10\left(tm\right)\end{matrix}\right.\)

Vậy ...

Bình luận (3)
Xem chi tiết
LL
1 tháng 10 2021 lúc 13:31

\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(đk:x\ge0\right)\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(\sqrt{x+3}+\sqrt{x+1}\right)\left(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}\right)}{\sqrt{x+3}+\sqrt{x+1}}=2x\)

\(\Leftrightarrow\dfrac{\left(x+3-x-1\right)\left(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}\right)}{\sqrt{x+3}+\sqrt{x+1}}=2x\)

\(\Leftrightarrow\dfrac{x^2+\sqrt{\left(x+1\right)\left(x+3\right)}}{\sqrt{x+3}+\sqrt{x+1}}=x\)

\(\Leftrightarrow x\sqrt{x+3}+x\sqrt{x+1}-x^2-\sqrt{\left(x+1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x+3}\left(x-\sqrt{x+1}\right)-x\left(x-\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{x+1}\right)\left(\sqrt{x+3}-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{x+1}\\x=\sqrt{x+3}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2-x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\left(tm\right)\\x=\dfrac{1-\sqrt{5}}{2}\left(ktm\right)\\x=\dfrac{1+\sqrt{13}}{2}\left(tm\right)\\x=\dfrac{1-\sqrt{13}}{2}\left(ktm\right)\end{matrix}\right.\)

Bình luận (0)