giải phương trình \(\left(\sqrt{x+3}-\sqrt{x+1}\right).\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)

LL
1 tháng 10 2021 lúc 13:31

\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(đk:x\ge0\right)\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(\sqrt{x+3}+\sqrt{x+1}\right)\left(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}\right)}{\sqrt{x+3}+\sqrt{x+1}}=2x\)

\(\Leftrightarrow\dfrac{\left(x+3-x-1\right)\left(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}\right)}{\sqrt{x+3}+\sqrt{x+1}}=2x\)

\(\Leftrightarrow\dfrac{x^2+\sqrt{\left(x+1\right)\left(x+3\right)}}{\sqrt{x+3}+\sqrt{x+1}}=x\)

\(\Leftrightarrow x\sqrt{x+3}+x\sqrt{x+1}-x^2-\sqrt{\left(x+1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x+3}\left(x-\sqrt{x+1}\right)-x\left(x-\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{x+1}\right)\left(\sqrt{x+3}-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{x+1}\\x=\sqrt{x+3}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2-x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\left(tm\right)\\x=\dfrac{1-\sqrt{5}}{2}\left(ktm\right)\\x=\dfrac{1+\sqrt{13}}{2}\left(tm\right)\\x=\dfrac{1-\sqrt{13}}{2}\left(ktm\right)\end{matrix}\right.\)

Bình luận (0)