Những câu hỏi liên quan
ND
Xem chi tiết
TH
13 tháng 1 2021 lúc 22:27

Bài này là định lý khá cơ bản của tứ giác điều hoà.

Do AM, AC đẳng giác của góc BAD nên dễ dàng chứng minh được:

\(\widehat{BAM}=\widehat{CAD}\).

Mặt khác do tứ giác ABCD nội tiếp nên \(\widehat{ABM}=\widehat{ACD}\).

Từ đó \(\Delta ABM\sim\Delta ACD(g.g)\)

\(\Rightarrow\dfrac{AB}{BM}=\dfrac{AC}{CD}\Rightarrow AB.CD=BM.AC\).

Chứng minh tương tự, ta cũng có \(AD.BC=CM.AC\).

Mà BM = CM nên \(AB.CD=AD.BC\) hay tứ giác ABCD điều hoà.

(Định lý đảo vẫn đúng).

Bình luận (0)
TT
Xem chi tiết
NT
8 tháng 3 2022 lúc 20:39

a: Xét tứ giác AEHF có 

\(\widehat{AEH}+\widehat{AFH}=180^0\)

Do đó: AEHF là tứ giác nội tiép

b: Xét tứ giác ABDE có 

\(\widehat{AEB}=\widehat{ADB}=90^0\)

Do đó:ABDE là tứ giác nội tiếp

Bình luận (0)
H24
8 tháng 3 2022 lúc 20:41

a) \(\widehat{AEH}+\widehat{AFH}=90^o+90^o=180^o\)

\(\rightarrow\) Tứ giác \(AEHF\) nội tiếp đường tròn

b) \(\widehat{AEB}=\widehat{BDA}=90^o\)

\(\rightarrow\) Tứ giác \(ABDE\) nội tiếp đường tròn

 

Bình luận (0)
NT
8 tháng 3 2022 lúc 20:50

a, Xét tứ giác AEHF có 

^AFH + ^AEH = 1800

mà 2 góc này đối 

Vậy tứ giác AEHF là tứ giác nt 1 đường tròn 

b, Xét tứ giác ABDE có 

^AEB = ^BDA = 900

mà 2 góc này kề, cùng nhin cạnh AB

Vậy tứ giác ABDE là tứ giác nt 1 đường tròn

c, Xét tứ giác DEAC có 

^AFC = ^ADC = 900

mà 2 góc này kề, cùng nhìn cạnh AC 

Vậy tứ giác DEAC là tứ giác nt 1 đường tròn 

=> ^ADF = ^ACF 

Lại có ^ADE = ^ABE (góc nt chắn cung AE của tứ giác AEDB) 

Xét tứ giác BEFC có ^BFC = ^BEC = 900

mà 2 góc này kề, cùng nhìn cạnh BC 

Vậy tứ giác BEFC là tứ giác nt 1 đường tròn 

mà ^FBE = ^ECF (góc nt chắc cung FE)

=> ^FDA = ^EDA 

=> DH là pg ^EDF

Bình luận (0)
H24
Xem chi tiết
PV
Xem chi tiết
JU
Xem chi tiết
JU
Xem chi tiết
AN
Xem chi tiết
NT
22 tháng 3 2021 lúc 20:24

a) Xét (O) có 

ΔACD nội tiếp đường tròn(A,C,D\(\in\)(O))

AD là đường kính(gt)

Do đó: ΔACD vuông tại C(Định lí)

Suy ra: AC\(\perp\)CD tại C

hay \(EC\perp CD\) tại C

Xét tứ giác ECDF có 

\(\widehat{EFD}\) và \(\widehat{ECD}\) là hai góc đối

\(\widehat{EFD}+\widehat{ECD}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ECDF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Bình luận (0)
TW
Xem chi tiết
NT
31 tháng 10 2021 lúc 21:22

Xét tứ giác ABDC có 

I là trung điểm của BC

I là trung điểm của AD

Do đó: ABDC là hình bình hành

Bình luận (0)
GN
Xem chi tiết