Chứng minh tứ giác điều hòa là tứ giác nội tiếp.
P/s:câu hỏi hơi ngu nhưng vẫn mong ace giúp đỡ
Bài 1. Cho tứ giác ABCD nội tiếp (O), M là trung điểm BD. Chứng minh rằng, nếu AC, AM , là hai đường đẳng giác của góc BAD thì ABCD là tứ giác điều hòa.
Bài này là định lý khá cơ bản của tứ giác điều hoà.
Do AM, AC đẳng giác của góc BAD nên dễ dàng chứng minh được:
\(\widehat{BAM}=\widehat{CAD}\).
Mặt khác do tứ giác ABCD nội tiếp nên \(\widehat{ABM}=\widehat{ACD}\).
Từ đó \(\Delta ABM\sim\Delta ACD(g.g)\)
\(\Rightarrow\dfrac{AB}{BM}=\dfrac{AC}{CD}\Rightarrow AB.CD=BM.AC\).
Chứng minh tương tự, ta cũng có \(AD.BC=CM.AC\).
Mà BM = CM nên \(AB.CD=AD.BC\) hay tứ giác ABCD điều hoà.
(Định lý đảo vẫn đúng).
Cho tam giác ABC nhọn, ba đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh tứ giác AEHF là tứ giác nội tiếp. b) Chứng minh tứ giác ABDE là tứ giác nội tiếp. c) Chứng minh DH là tia phân giác của góc EDF
a: Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=180^0\)
Do đó: AEHF là tứ giác nội tiép
b: Xét tứ giác ABDE có
\(\widehat{AEB}=\widehat{ADB}=90^0\)
Do đó:ABDE là tứ giác nội tiếp
a) \(\widehat{AEH}+\widehat{AFH}=90^o+90^o=180^o\)
\(\rightarrow\) Tứ giác \(AEHF\) nội tiếp đường tròn
b) \(\widehat{AEB}=\widehat{BDA}=90^o\)
\(\rightarrow\) Tứ giác \(ABDE\) nội tiếp đường tròn
a, Xét tứ giác AEHF có
^AFH + ^AEH = 1800
mà 2 góc này đối
Vậy tứ giác AEHF là tứ giác nt 1 đường tròn
b, Xét tứ giác ABDE có
^AEB = ^BDA = 900
mà 2 góc này kề, cùng nhin cạnh AB
Vậy tứ giác ABDE là tứ giác nt 1 đường tròn
c, Xét tứ giác DEAC có
^AFC = ^ADC = 900
mà 2 góc này kề, cùng nhìn cạnh AC
Vậy tứ giác DEAC là tứ giác nt 1 đường tròn
=> ^ADF = ^ACF
Lại có ^ADE = ^ABE (góc nt chắn cung AE của tứ giác AEDB)
Xét tứ giác BEFC có ^BFC = ^BEC = 900
mà 2 góc này kề, cùng nhìn cạnh BC
Vậy tứ giác BEFC là tứ giác nt 1 đường tròn
mà ^FBE = ^ECF (góc nt chắc cung FE)
=> ^FDA = ^EDA
=> DH là pg ^EDF
cho tứ giác ABCD .Gọi O là giao điểm của hai đường chéo . I và K lần lượt là trung điểm của BC và CD .Gọi M,N then thứ tự là điểm đối xứng của điểm O qua tâm I và tâm K
a) chứng minh tứ giác ABCD là hình bình hành
b) tứ giác ABCD có điều kiện gì thì tứ giác BMND là hình chữ nhật
c) chứng minh rằng 3 điểm M,C,N thẳng hàng
mong sự giúp đỡ
cho tam giác ABC nhọn nội tiếp đường tròn o . H là giao điểm ba đường cao AD,BE,CF a) Chứng minh tứ giác BFEC và tứ giác AFHE nội tiếp b)Vẽ đường kính AK .Chứng minh AK.AD=AB.AC c)gọi N là giao điểm của FE và OK ,Chứng minh tứ giác NHDK nội tiếp
cho tam giác ABC nhọn nội tiếp đường tròn o . H là giao điểm ba đường cao AD,BE,CF a) Chứng minh tứ giác BFEC và tứ giác AFHE nội tiếp b)Vẽ đường kính AK .Chứng minh AK.AD=AB.AC c)gọi N là giao điểm của FE và OK ,Chứng minh tứ giác NHDK nội tiếp
Cho tứ giác ABCD nội tiếp đường tròn tâm O đường kính AD hai đường chéo AC và BD cắt nhau tại E kẻ EF vuông góc ad a) Chứng minh tứ giác ECDF nội tiếp Xác định tâm I b) Chứng minh CA là phân giác của góc BCF c) Chứng minh tứ giác bcef nội tiếp
a) Xét (O) có
ΔACD nội tiếp đường tròn(A,C,D\(\in\)(O))
AD là đường kính(gt)
Do đó: ΔACD vuông tại C(Định lí)
Suy ra: AC\(\perp\)CD tại C
hay \(EC\perp CD\) tại C
Xét tứ giác ECDF có
\(\widehat{EFD}\) và \(\widehat{ECD}\) là hai góc đối
\(\widehat{EFD}+\widehat{ECD}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ECDF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Cho tam giác ABC . Gọi I là trung điểm của BC. Lấy D đối xứng với A qua I. Chứng minh tứ giác ABDC là hình bình hành mong giúp đỡ
Xét tứ giác ABDC có
I là trung điểm của BC
I là trung điểm của AD
Do đó: ABDC là hình bình hành
Cho tứ giác ABCD nội tiếp nửa đưởng tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Vẽ EF vuông góc vớI AD. Chứng minh:
a, Tứ giác ABEF, DCEF nội tiếp
b, CA là phân giác của góc BCF
c, Gọi M là trung điểm của DE, chứng minh tứ giác BCMF nội tiếp.
MỌI NGƯỜI AI BIẾT LÀM GIẢI GIÚP MÌNH PHẦN C. CẢM ƠN NHIỀU <3