Những câu hỏi liên quan
NV
Xem chi tiết
HP
27 tháng 8 2021 lúc 23:44

Giả sử \(c\le1\).

Khi đó: \(ab+bc+ca-abc=ab\left(1-c\right)+c\left(a+b\right)\ge0\)

\(\Rightarrow ab+bc+ca\ge abc\left(1\right)\)

Đẳng thức xảy ra chẳng hạn với \(a=2,b=c=0\).

Theo giả thiết:

\(4=a^2+b^2+c^2+abc\ge2ab+c^2+abc\)

\(\Leftrightarrow ab\left(c+2\right)\le4-c^2\)

\(\Leftrightarrow ab\le2-c\)

Trong ba số \(\left(a-1\right),\left(b-1\right),\left(c-1\right)\) luôn có hai số cùng dấu.

Không mất tính tổng quát, giả sử \(\left(a-1\right)\left(b-1\right)\ge0\).

\(\Rightarrow ab-a-b+1\ge0\)

\(\Leftrightarrow ab\ge a+b-1\)

\(\Leftrightarrow abc\ge ca+bc-c\)

\(\Rightarrow abc+2\ge ca+bc+2-c\ge ab+bc+ca\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow\) Bất đẳng thức được chứng minh.

 

Bình luận (0)
PT
Xem chi tiết
NN
22 tháng 2 2022 lúc 16:55

Đặt \(abc=k^3\), khi đó tồn tại các số thực dương x,y,z sao cho:

\(a=\frac{ky}{x};b=\frac{kz}{y};c=\frac{kx}{z}\)

Khi đó bất đẳng thức cần chứng minh tương đương:

\(\frac{1}{\frac{ky}{x}\left(\frac{kz}{y}+1\right)}+\frac{1}{\frac{kz}{y}\left(\frac{kx}{z}+1\right)}+\frac{1}{\frac{kx}{z}\left(\frac{ky}{x}+1\right)}\ge\frac{3}{k\left(k+1\right)}\)

Hay \(\frac{x}{y+kz}+\frac{y}{z+kx}+\frac{z}{x+ky}\ge\frac{3}{k+1}\)

Áp dụng bất đẳng thức Bunhiacopxki ta được:

\(\frac{x}{y+kz}+\frac{y}{z+kx}+\frac{z}{x+ky}\)

\(=\frac{x^2}{x\left(y+kz\right)}+\frac{y^2}{y\left(z+kx\right)}+\frac{z^2}{z\left(x+ky\right)}\ge\frac{\left(x+y+z\right)^2}{x\left(y+kz\right)+y\left(z+kx\right)+z\left(x+ky\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(k+1\right)\left(xy+yz+zx\right)}\ge\frac{3}{k+1}\)

Vậy bất đẳng thức được chứng minh, dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
MA
Xem chi tiết
TN
14 tháng 7 2017 lúc 21:54

Câu hỏi của Alice Sophia - Toán lớp 9 - Học toán với OnlineMath

Bình luận (0)
PT
Xem chi tiết
H24
31 tháng 8 2021 lúc 9:16

Tham Khao

a) Áp dụng BĐT AM-GM ta có:
(a + b) ≥ 2√ab
(b + c) ≥ 2√bc
(c + a) ≥ 2√ca
Vì a,b,c > 0 nên nhân vế với vế 3 BĐT trên ta được:
(a + b)(b + c)(c + a) ≥ 8√a^2b^2c^2 =8abc (đpcm)
Dấu = xảy ra <=> a=b=c

Bình luận (0)
NV
Xem chi tiết
VG
15 tháng 11 2017 lúc 16:38

ta có: \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}.\)

\(\ge3\sqrt[3]{\frac{a.b.c}{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}=\frac{3}{\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}\)    (vì abc=1)     (*)

Mặt khác: \(\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2\ge64abc=64=4^3\)   (vì abc=1)

=> \(\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}\ge4\)   (**)

Từ (*), (**)=> đpcm

Bình luận (0)
PH
12 tháng 2 2020 lúc 16:07

Bạn dưới kia làm ngược dấu thì phải,mà bài này hình như là mũ 3

\(\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{b+1}{8}\ge3\sqrt[3]{\frac{a^3\left(a+1\right)\left(b+1\right)}{64\left(a+1\right)\left(b+1\right)}}=\frac{3a}{4}\)

Tương tự rồi cộng lại:

\(RHS+\frac{2\left(a+b+c\right)+6}{8}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Leftrightarrow RHS\ge\frac{3}{4}\) tại a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa
KN
31 tháng 5 2020 lúc 16:55

Ta cần chứng minh \(\Sigma\frac{a}{\left(a+1\right)\left(b+1\right)}\ge\frac{3}{4}\)

\(\Leftrightarrow\Sigma\left[4a\left(c+1\right)\right]\ge3\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

\(\Leftrightarrow4\Sigma ab+4\Sigma a\ge3abc+3\Sigma ab+3\Sigma a+3\)

\(\Leftrightarrow ab+bc+ca+a+b+c\ge6\)(*)

Áp dụng bất đẳng thức Cauchy cho 3 số dương ta được:

\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}=3\)\(a+b+c\ge3\sqrt[3]{abc}=3\)(Do theo giả thiết thì abc = 1)

Suy ra (*) đúng

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
HT
14 tháng 3 2022 lúc 22:02

chết đăng nhầm sogy nha

Bình luận (0)
NV
Xem chi tiết
TC
27 tháng 8 2021 lúc 21:55

undefined

Bình luận (0)
NC
27 tháng 8 2021 lúc 22:00

Bình luận (0)
KN
Xem chi tiết
H24
26 tháng 4 2020 lúc 9:21

\(\Leftrightarrow\left(\Sigma a\right)^4\left(\Sigma a^4b^4\right)\left[\Sigma c^2\left(a^2+b^2\right)^2\right]\ge54^2\left(abc\right)^6\)

Giả sử \(c=\text{min}\left\{a,b,c\right\}\)và đặt \(a=c+u,b=c+v\) thì nhận được một BĐT hiển nhiên :P

Bình luận (0)
 Khách vãng lai đã xóa
TL
26 tháng 4 2020 lúc 10:34

Theo BĐT AM-GM ta có:

\(c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(c^2+a^2\right)\ge3\sqrt[3]{\left(abc\right)^2\left[\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\right]^2}\)

\(\ge3\sqrt[3]{\left(abc\right)^264\left(abc\right)^4}=12\left(abc\right)^2\)

=> \(\sqrt{c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(a^2+c^2\right)^2}\ge2\sqrt{3}abc\)

Cũng theo BĐT AM-GM \(\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4\ge3\sqrt[3]{\left(ab\right)^4\left(bc\right)^4\left(ca\right)^4}=3\left(abc\right)^2\sqrt[3]{\left(abc\right)^2}\)

=> \(\sqrt{\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4}\ge\sqrt{3}\cdot abc\sqrt[3]{abc}\)và \(\left(a+b+c\right)^2\ge9\sqrt[3]{\left(abc\right)^2}\)

=> \(\sqrt{c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(c^2+a^2\right)^2}\cdot\left(a+b+c\right)^2\cdot\sqrt{\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4}\)

\(\ge2\sqrt{3}\left(abc\right)\cdot\sqrt{3}\left(abc\right)\sqrt[3]{abc}\cdot9\sqrt[3]{\left(abc\right)^2}\ge54\left(abc\right)^3\)

Dấu "=" xảy ra <=> a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
TM
23 tháng 5 2020 lúc 21:40

\(\hept{\begin{cases}54&A,B,C^2&\end{cases}}\)\(\sqrt[54]{454}.A.B.C\)\(\sqrt{AB^4+BC^4+CA^4}\)\(\Rightarrow AB=CA=BC^4\)nên ta sẽ lại là 54abc3

vậy suy ra  \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) ta =\(\notin54\) chả việc gì dài dòng cả

Bình luận (0)
 Khách vãng lai đã xóa
TQ
Xem chi tiết
H24
18 tháng 12 2018 lúc 21:28

Trời ! Sao trên đời này có nhiều đứa ngu quá vậy ?

Bình luận (0)
H24
18 tháng 12 2018 lúc 21:30

Trời ! Sao trên đời này có nhiều người chảnh quá vậy ?

Bình luận (0)
NH
18 tháng 12 2018 lúc 21:32

https://toanmath.com/2016/07/ki-thuat-su-dung-bat-dang-thuc-co-si-nguyen-cao-cuong.html

Bình luận (0)