Tham Khao
a) Áp dụng BĐT AM-GM ta có:
(a + b) ≥ 2√ab
(b + c) ≥ 2√bc
(c + a) ≥ 2√ca
Vì a,b,c > 0 nên nhân vế với vế 3 BĐT trên ta được:
(a + b)(b + c)(c + a) ≥ 8√a^2b^2c^2 =8abc (đpcm)
Dấu = xảy ra <=> a=b=c
Tham Khao
a) Áp dụng BĐT AM-GM ta có:
(a + b) ≥ 2√ab
(b + c) ≥ 2√bc
(c + a) ≥ 2√ca
Vì a,b,c > 0 nên nhân vế với vế 3 BĐT trên ta được:
(a + b)(b + c)(c + a) ≥ 8√a^2b^2c^2 =8abc (đpcm)
Dấu = xảy ra <=> a=b=c
Cho \(a;b;c\) là các số thực dương thỏa mãn :\(0< a;b;c< 1\). Chứng minh rằng:
\(\dfrac{1}{a.\left(1-b\right)}+\dfrac{1}{b.\left(1-c\right)}+\dfrac{1}{c.\left(1-a\right)}\ge\dfrac{3}{1-\left(a+b+c\right)+ab+bc+ac}\)
P/s: Đề cương toán lớp 10 trường THPT chuyên sư phạm Hà Nội.
Em xin nhờ quý thầy cô giáo và các bạn giúp đỡ, em cám ơn nhiều ạ!
Cho các số dương a,b,c thoả mãn abc=1. Chứng minh rằng \(\dfrac{a+b+c}{2}\ge\dfrac{1}{\left(a+b\right)c}+\dfrac{1}{\left(b+c\right)a}+\dfrac{1}{\left(c+a\right)b}\)
Cho các số thực dương : \(a;b;c\) thỏa mãn điều kiện : \(ab+bc+ac+abc=4\)
Chứng minh rằng : \(\dfrac{1}{\sqrt{2.\left(a^2+b^2\right)}+4}+\dfrac{1}{\sqrt{2.\left(b^2+c^2\right)}+4}+\dfrac{1}{\sqrt{2.\left(c^2+a^2\right)}+4}\le\dfrac{1}{2}\)
P/s: Em xin phép nhờ sự giúp đỡ của quý thầy cô giáo và các bạn yêu toán.
Em cám ơn nhiều lắm ạ!
Cho a, b, c > 0 và abc = 1. Chứng minh rằng \(\dfrac{1}{a^2.\left(b+c\right)}+\dfrac{1}{b^2.\left(c+a\right)}+\dfrac{1}{c^2.\left(a+b\right)}\ge\dfrac{3}{2}\)
Cho a,b,c là các số dương. Chứng minh rằng:
\(\dfrac{a^4}{b^3\left(c+2a\right)}+\dfrac{b^4}{c^3\left(a+2b\right)}+\dfrac{c^4}{a^3\left(b+2c\right)}\ge1\)
Cho \(a,b,c\) dương thỏa mãn \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=8\). Chứng minh
\(\dfrac{a+b+c}{3}\ge\sqrt[27]{\dfrac{a^3+b^3+c^3}{3}}\)
eztosol
Cho a, b, c > 0. CMR \(\dfrac{1}{a\left(a+1\right)}+\dfrac{1}{b\left(b+1\right)}+\dfrac{1}{c\left(c+1\right)}\ge\dfrac{3}{\sqrt[3]{abc}\left(1+\sqrt[3]{abc}\right)}\)
Cho a, b, c, d > 0. Chứng minh rằng:
1.
\(\dfrac{a}{\sqrt{a^2+8bc}}\)+ \(\dfrac{b}{\sqrt{b^2+8ac}}\)+ \(\dfrac{c}{\sqrt{c^2+8ab}}\) ≥ 1
2.
\(\dfrac{a}{b+2c+3d}\)+\(\dfrac{b}{c+2d+3a}\)+\(\dfrac{c}{d+2a+3b}\)+ \(\dfrac{d}{a+2b+3c}\) ≥ \(\dfrac{2}{3}\)
3.
\(\dfrac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}\) + \(\dfrac{b^4}{\left(b+c\right)\left(b^2+c^2\right)}\) + \(\dfrac{c^4}{\left(c+d\right)\left(c^2+d^2\right)}\) + \(\dfrac{d^4}{\left(d+a\right)\left(d^2+a^2\right)}\) ≥ \(\dfrac{a+b+c+d}{4}\)
Bất đẳng thức BuNyaKovSky ( BCS )
cho a,b,c là các số thực dương. Cmr
\(\dfrac{a^4}{b^3\left(c+a\right)}+\dfrac{b^4}{c^3\left(a+b\right)}+\dfrac{c^4}{a^3\left(b+c\right)}\ge\dfrac{3}{2}\)