Những câu hỏi liên quan
TD
Xem chi tiết
TS
Xem chi tiết

dell bt

Bình luận (0)
 Khách vãng lai đã xóa
TT
7 tháng 3 2020 lúc 9:52

Ta có :

\(\left(x-1\right)\left(x-12\right)=2\left(x-2\right)\left(x-3\right)\)

\(\Leftrightarrow x^2-13x+12=2\left(x^2-5x+6\right)\)

\(\Leftrightarrow x^2-13x+12=2x^2-10x+12\)

\(\Leftrightarrow x^2+2x=0\)

\(\Leftrightarrow x\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)

Vậy : \(x\in\left\{0,-2\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
2U
7 tháng 3 2020 lúc 9:54

cách đoán mò ngây thơ nhưng KQ vẫn đúng == chỉ thiếu KQ thoi 

\(\left(x-1\right)\left(x-12\right)=2\left(x-2\right)\left(x-3\right)\)

\(x-x+12=2x-4x+12\)

\(x-x-2x+4x=12-12\)

\(2x=0\Leftrightarrow x=0\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
NM
11 tháng 9 2021 lúc 8:38

\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)

Bình luận (0)
AH
11 tháng 9 2021 lúc 8:44

Lời giải:

a. $f'(x)\leq 0$

$\Leftrightarrow 3x^2-6x\leq 0$

$\Leftrightarrow x(x-2)\leq 0$

$\Leftrightarrow 0\leq x\leq 2$

b.

$f'(x)=x^2-3x+2=0$

$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$

$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$

$\Leftrightarrow x-2=0$

$\Leftrightarrow x=2$

c.

$g(x)=f(1-2x)+x^2-x+2022$

$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$

$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$

$g'(x)\geq 0$

$\Leftrightarrow -24x^2+2x+5\geq 0$

$\Leftrightarrow (5-12x)(2x-1)\geq 0$

$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$

Bình luận (0)
HA
Xem chi tiết
H24
24 tháng 2 2021 lúc 19:49

`a,(x+3)(x^2+2021)=0`

`x^2+2021>=2021>0`

`=>x+3=0`

`=>x=-3`

`2,x(x-3)+3(x-3)=0`

`=>(x-3)(x+3)=0`

`=>x=+-3`

`b,x^2-9+(x+3)(3-2x)=0`

`=>(x-3)(x+3)+(x+3)(3-2x)=0`

`=>(x+3)(-x)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$

`d,3x^2+3x=0`

`=>3x(x+1)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$

`e,x^2-4x+4=4`

`=>x^2-4x=0`

`=>x(x-4)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$

Bình luận (0)
ND
24 tháng 2 2021 lúc 19:13

1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)

=> S={-3}

 

Bình luận (0)
NT
24 tháng 2 2021 lúc 20:07

Bài 1: 

a) Ta có: \(\left(x+3\right)\left(x^2+2021\right)=0\)

mà \(x^2+2021>0\forall x\)

nên x+3=0

hay x=-3

Vậy: S={-3}

Bài 2: 

b) Ta có: \(x\left(x-3\right)+3\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Vậy: S={3;-3}

Bình luận (0)
DN
Xem chi tiết
NM
24 tháng 1 2018 lúc 21:57

tôi chịu

Bình luận (0)
KT
24 tháng 1 2018 lúc 22:04

b)  Đặt  \(x-7=a\) ta có:

         \(\left(a+1\right)^4+\left(a-1\right)^4=16\)

 \(\Leftrightarrow\)\(a^4+4a^3+6a^2+4a+1+a^4-4a^3+6a^2-4a+1=16\)

 \(\Leftrightarrow\)\(2a^4+12a^2+2-16=0\)

 \(\Leftrightarrow\)\(2\left(a^4+6a^2-7\right)=0\)

 \(\Leftrightarrow\)\(a^4+6a^2-7=0\)

 \(\Leftrightarrow\)\(\left(a-1\right)\left(a+1\right)\left(a^2+7\right)=0\)

Vì     \(a^2+7>0\) nên    \(\orbr{\begin{cases}a-1=0\\a+1=0\end{cases}}\)

Thay trở lại ta có:   \(\orbr{\begin{cases}x-8=0\\x-6=0\end{cases}}\) \(\Leftrightarrow\)\(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)

Vậy...

Bình luận (0)
H24
24 tháng 1 2018 lúc 22:33

b) \(\left(x-6\right)^4+\left(x-8\right)^4=16\)

Ta có: \(\left(x-6\right)^4+\left(x-8\right)^4=16\)(1)

Đặt t = x - 7, từ (1) suy ra:

\(\Leftrightarrow\left(t^4+4t^3+6t^2+4t+1\right)+\left(t^3-4t^3+6t^2-4t+1\right)\)

\(\Leftrightarrow2t^4+12t^2+2=16\)

\(\Leftrightarrow t^4+6t^2+1=8\)

\(\Leftrightarrow t^4+6t^2-7=0\)

\(\Leftrightarrow\left(t^4-1\right)+\left(6t^2-6\right)=0\)

\(\Leftrightarrow\left(t^2+1\right)\left(t^2-1\right)+6.\left(t^2-1\right)=0\)

\(\Leftrightarrow\left(t^2-1\right)\left(t^2+1+6\right)=0\)

\(\Leftrightarrow\left(t-1\right)\left(t+1\right)\left(t^2+7\right)=0\)

Vì: \(t^2+7\ge7\)nên:

\(\left(t-1\right)\left(t+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-1=0\\t+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}t=1\\t=-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=6\\x=8\end{cases}}\)

\(\Rightarrow x\in\left\{6;8\right\}\)

Bình luận (0)
HT
Xem chi tiết
H24
20 tháng 2 2020 lúc 9:56

a, \(\left(x^2+x\right)^2+4\left(x^2+x\right)-12=0\)

\(\Leftrightarrow x^4+2x^3+x^2+4x^2+4x+12=0\)

\(\Leftrightarrow x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)

\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^3+3x^2+8x+12\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^3+2x^2+x^2+2x+6x+12\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)=0\)

có : \(x^2+x+6>0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)

b,  \(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)-297=0\)

\(\Leftrightarrow\left[\left(x-1\right)\left(x+5\right)\right]\left[\left(x-3\right)\left(x+7\right)\right]-297=0\)

\(\Leftrightarrow\left(x^2+4x-5\right)\left(x^2+7x-21\right)-297=0\)

đặt \(x^2+4x-13=t\)

\(\Leftrightarrow\left(t+8\right)\left(t-8\right)-297=0\)

\(\Leftrightarrow t^2-64-297=0\)

\(\Leftrightarrow t^2=361\)

\(\Leftrightarrow t=\pm19\)

có t rồi tìm x thôi

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NL
18 tháng 4 2021 lúc 22:48

TH1: \(x\ge2\)

\(\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=4\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=4\)

\(\Leftrightarrow x^4-5x^2=0\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-\sqrt{5}\left(loại\right)\\x=\sqrt{5}\end{matrix}\right.\)

TH2: \(x< 2\)

\(-\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=4\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=-4\)

\(\Leftrightarrow x^4-5x^2+8=0\)

\(\Leftrightarrow\left(x^2-\dfrac{5}{2}\right)^2+\dfrac{7}{4}=0\) (vô nghiệm)

Vậy \(x=\sqrt{5}\)

Bình luận (0)
PH
Xem chi tiết
2D
Xem chi tiết
XO
1 tháng 2 2023 lúc 23:48

1) |x| + x2 - x = x  + 10 (1)

Nếu x < 0 thì 

|x| = - x 

Khi đó (1) <=> x2 - 3x - 10 = 0

Có \(\Delta=\left(-3\right)^2-4.\left(-10\right).1=49>0\)

=> Phương trình 2 nghiệm : \(x_1=\dfrac{3+\sqrt{49}}{2}=5\left(\text{loại}\right);x_2=\dfrac{3-\sqrt{49}}{2}=-2\)

Nếu \(x\ge0\Leftrightarrow\left|x\right|=x\)

Phương trình (1) <=> x2 - x - 10 = 0

\(\Delta=\left(-1\right)^2-4.\left(-10\right).1=41>0\)

=> Phương trình 2 nghiệm \(x_1=\dfrac{1+\sqrt{41}}{2};x_2=\dfrac{1-\sqrt{41}}{2}\left(\text{loại}\right)\)

Vậy tập nghiệm phương trình \(S=\left\{-2;\dfrac{1+\sqrt{41}}{2}\right\}\)

Bình luận (0)
XO
1 tháng 2 2023 lúc 23:50

2) x2 - 1 + x2 - 4 = 3

<=> 2x2 = 8

<=> x2 = 4

<=> \(x=\pm2\)

Tập nghiệm \(S=\left\{2;-2\right\}\)

Bình luận (0)
DV
Xem chi tiết
NM
20 tháng 11 2021 lúc 17:26

\(ĐK:x\ne0;x\ne1\\ PT\Leftrightarrow\left(\dfrac{1}{x}+2\right)\left(2+\dfrac{x+1}{x-1}-x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{x}=-2\\\dfrac{x+1}{x-1}=x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x+1=x^2-x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x^2-2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=1+\sqrt{2}\\x=1-\sqrt{2}\end{matrix}\right.\)

Bình luận (0)