Những câu hỏi liên quan
NA
Xem chi tiết
H24
Xem chi tiết
L2
Xem chi tiết
NL
22 tháng 10 2021 lúc 21:46

\(x^3+x\ge2\sqrt{x^4}=2x^2\)

Tương tự:

\(y^3+y\ge2y^2\)

\(z^3+z\ge2z^2\)

Cộng vế:

\(x^3+y^3+z^3+x+y+z\ge2\left(x^2+y^2+z^2\right)=6\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (2)
LP
Xem chi tiết
H24
Xem chi tiết
H24
8 tháng 7 2016 lúc 21:15
(x+z-x)/x = (z+x-y)/y = (x+y-z)/z
Bình luận (0)
HP
8 tháng 7 2016 lúc 21:18

sao lại không thỏa mãn điều kiện hả bn??

Bình luận (0)
HN
8 tháng 7 2016 lúc 22:06

Đề bài : Cho 3 số x,y,z thoả mãn điều kiện \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\). Tính giá trị biểu thức \(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

GIẢI : 

Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

Nếu x+y+z=0 \(\Rightarrow A=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=-1\)Nếu x+y+z khác 0 => \(x=y=z\)

Thay vào A được : \(A=\left(1+1\right)\cdot\left(1+1\right).\left(1+1\right)=8\)

Bình luận (0)
GA
Xem chi tiết
MA
Xem chi tiết
PH
6 tháng 2 2022 lúc 8:41

srweafgtseawref

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết
LA
30 tháng 10 2021 lúc 11:19

Ta có:

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)

Thay tất cả giá trị x,y,z vào M ta được:

\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)

\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)

\(\Rightarrow M=2020+2021=4041\)

Bình luận (0)
 Khách vãng lai đã xóa
MA
Xem chi tiết
TN
7 tháng 10 2016 lúc 23:12

\(Gt\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow ab+bc+ca=1\)

\(VT=\frac{2}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\)

\(=\frac{\frac{2}{x}}{\sqrt{\frac{1}{x^2}+1}}+\frac{\frac{1}{y}}{\sqrt{\frac{1}{y^2}+1}}+\frac{\frac{1}{z}}{\sqrt{\frac{1}{z^2}+1}}\)

\(=\frac{2a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)

\(=\sqrt{\frac{2a}{\left(a+b\right)}\cdot\frac{2a}{\left(a+c\right)}}+\sqrt{\frac{2b}{\left(b+a\right)}\cdot\frac{b}{2\left(b+c\right)}}\)\(+\sqrt{\frac{2c}{\left(c+a\right)}\cdot\frac{c}{2\left(c+b\right)}}\)

\(\le\frac{\frac{2a}{a+b}+\frac{2a}{a+c}+\frac{2b}{a+b}+\frac{b}{2\left(b+c\right)}+\frac{2c}{c+a}+\frac{c}{2\left(c+b\right)}}{2}=\frac{9}{4}\)

Bình luận (0)