Những câu hỏi liên quan
NH
Xem chi tiết
NT
4 tháng 7 2017 lúc 7:47

\(a,\frac{2}{3+2\sqrt{2}}-\frac{7}{1-2\sqrt{2}}+\frac{4}{\sqrt{5}-1}+\sqrt{8}-2\)

\(=\frac{2.\left(3-2\sqrt{2}\right)}{9-8}-\frac{7.\left(1+2\sqrt{2}\right)}{1-8}+\frac{4.\left(\sqrt{5}+1\right)}{5-1}+2\sqrt{2}-2\)

\(=6-4\sqrt{2}-\frac{7.\left(1+2\sqrt{2}\right)}{-7}+\frac{4.\left(\sqrt{5}+1\right)}{4}+2\sqrt{2}-2\)

\(=6-4\sqrt{2}+1+2\sqrt{2}+\sqrt{5}+1+2\sqrt{2}-2\)

\(=6+\sqrt{5}\)

\(b,\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{5}}\)

\(=\frac{1-\sqrt{2}}{1-2}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{5}}{4-5}\)

\(=\frac{1-\sqrt{2}}{-1}+\frac{\sqrt{3}-\sqrt{2}}{1}+\frac{\sqrt{4}-\sqrt{5}}{-1}\)

\(=-1+\sqrt{2}+\sqrt{3}-\sqrt{2}-2+\sqrt{5}\)

\(=-3+\sqrt{3}+\sqrt{5}\)

\(c,\sqrt{4-2\sqrt{3}}+2\sqrt{3}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}+2\sqrt{3}\)

\(=\sqrt{3}-1+2\sqrt{3}\)

\(=-1+3\sqrt{3}\)

\(d,A=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)

\(=\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}+\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}\)

\(=\frac{\sqrt{3}-1}{\sqrt{2}}+\frac{\sqrt{3}+1}{\sqrt{2}}\)

\(=\frac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}\)

\(=\frac{2\sqrt{3}}{\sqrt{2}}\)

\(=\sqrt{6}\)

\(e,B=\sqrt{\frac{2}{2+\sqrt{3}}}\)

Ta có \(\frac{2}{2+\sqrt{3}}=\frac{2.\left(2-\sqrt{3}\right)}{4-3}=4-2\sqrt{3}\)

Thay lại ta được \(\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

.... Đúng thì ủng hộ nha ....
 Kết bạn với mình ... ;) ;)

Bình luận (0)
BG
Xem chi tiết
AT
12 tháng 7 2021 lúc 15:51

\(\sqrt{7-4\sqrt{3}}=\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(2-\sqrt{3}\right)^2}=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)

\(\sqrt{9+4\sqrt{5}}=\sqrt{2^2+2.2.\sqrt{5}+\left(\sqrt{5}\right)^2}+\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2+\sqrt{5}\right|=2+\sqrt{5}\)

\(\sqrt{11-4\sqrt{7}}=\sqrt{\left(\sqrt{7}\right)^2-2.\sqrt{7}.2+2^2}=\sqrt{\left(\sqrt{7}-2\right)^2}=\left|\sqrt{7}-2\right|=\sqrt{7}-2\)

Bình luận (0)
NT
12 tháng 7 2021 lúc 23:56

\(\sqrt{7-4\sqrt{3}}=2-\sqrt{3}\)

\(\sqrt{9+4\sqrt{5}}=\sqrt{5}+2\)

\(\sqrt{11-4\sqrt{7}}=\sqrt{7}-2\)

Bình luận (0)
TN
Xem chi tiết
H24
Xem chi tiết
AH
26 tháng 6 2021 lúc 16:19

\(A=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+1+2\sqrt{3.1}}-\sqrt{3+1-2\sqrt{3.1}}\)

\(=\sqrt{(\sqrt{3}+1)^2}-\sqrt{(\sqrt{3}-1)^2}=|\sqrt{3}+1|-|\sqrt{3}-1|=2\)

\(B=\sqrt{4+5-2\sqrt{4.5}}+\sqrt{4+5+2\sqrt{4.5}}=\sqrt{(\sqrt{4}-\sqrt{5})^2}+\sqrt{(\sqrt{4}+\sqrt{5})^2}\)

\(=|\sqrt{4}-\sqrt{5}|+|\sqrt{4}+\sqrt{5}|=2\sqrt{5}\)

 

Bình luận (1)
AH
26 tháng 6 2021 lúc 16:31

\(C\sqrt{2}=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7+1-2\sqrt{7.1}}-\sqrt{7+1+2\sqrt{7.1}}\)

\(=\sqrt{(\sqrt{7}-1)^2}-\sqrt{(\sqrt{7}+1)^2}\)

\(=|\sqrt{7}-1|-|\sqrt{7}+1|=-2\Rightarrow C=-\sqrt{2}\)

----------------------------

\(7+4\sqrt{3}=(2+\sqrt{3})^2\Rightarrow 10\sqrt{7+4\sqrt{3}}=10(2+\sqrt{3})\)

\(\Rightarrow \sqrt{48-10\sqrt{7+4\sqrt{3}}}=\sqrt{28-10\sqrt{3}}=\sqrt{(5-\sqrt{3})^2}=5-\sqrt{3}\)

\(\Rightarrow 3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}=3+5(5-\sqrt{3})=28-5\sqrt{3}\)

\(\Rightarrow D=\sqrt{5\sqrt{28-5\sqrt{3}}}\)

 

Bình luận (0)
AH
26 tháng 6 2021 lúc 16:35

Cách 1:

\(E=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}\)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})=(4+\sqrt{15})(8-2\sqrt{15})\)

\(=2(4+\sqrt{15})(4-\sqrt{15})=2(16-15)=2\)

Cách 2:

\(E^2=(4+\sqrt{15})^2(\sqrt{10}-\sqrt{6})^2(4-\sqrt{15})=(4+\sqrt{15})(4-\sqrt{15})(4+\sqrt{15}).(16-4\sqrt{15})\)

\(=(16-15)(4+\sqrt{15})(4-\sqrt{15}).4=(16-15)(16-15).4=4\)

Vì $E>0$ nên $E=2$

Bình luận (0)
VL
Xem chi tiết
H24
18 tháng 6 2021 lúc 7:08

`a)\sqrt{9-4sqrt5}-sqrt5`

`=sqrt{5-2.2sqrt5+4}-sqrt5`

`=sqrt{(sqrt5-2)^2}-sqrt5`

`=|\sqrt5-2|-sqrt5`

`=sqrt5-2-sqrt5=-2`

`b)\sqrt{7-4sqrt3}+sqrt{4-2sqrt3}`

`=\sqrt{4-2.2sqrt3+3}+\sqrt{3-2sqrt3+1}`

`=sqrt{(2-sqrt3)^2}+sqrt{(sqrt3-1)^2}`

`=|2-sqrt3|+|sqrt3-1|`

`=2-sqrt3+sqrt3-1=1`

`c)(x-49)/(sqrtx-7)(x>=0,x ne 49)`

`=((sqrtx-7)(sqrtx+7))/(sqrtx-7)`

`=sqrtx+7`

`d)\sqrt{4+2\sqrt3}-\sqrt{13+4sqrt3}`

`=\sqrt{3+2sqrt3+1}-\sqrt{12+2.2sqrt3+1}`

`=sqrt{(sqrt3+1)^2}-\sqrt{(2sqrt3+1)^2}`

`=sqrt3+1-2sqrt3-1=-sqrt3`

`e)2+sqrt{17-4sqrt{9+4sqrt{45}}}`(câu này hơi sai)

Bình luận (1)
CD
Xem chi tiết
TD
14 tháng 10 2019 lúc 21:06

B = \(\frac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\frac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)

=>  \(\frac{2}{\sqrt{2}}B=\frac{8+2\sqrt{7}}{6+\sqrt{8+2\sqrt{7}}}+\frac{8-2\sqrt{7}}{6-\sqrt{8-2\sqrt{7}}}\)

=> \(\frac{2}{\sqrt{2}}B=\frac{\left(\sqrt{7}+1\right)^2}{6+\sqrt{7}+1}+\frac{\left(\sqrt{7}-1\right)^2}{6-\sqrt{7}+1}\)

=> \(\frac{2}{\sqrt{2}}B=\frac{\left(\sqrt{7}+1\right)^2}{\sqrt{7}\left(\sqrt{7}+1\right)}+\frac{\left(\sqrt{7}-1\right)^2}{\sqrt{7}\left(\sqrt{7}-1\right)}\)

=> \(\frac{2}{\sqrt{2}}B=\frac{\sqrt{7}+1}{\sqrt{7}}+\frac{\sqrt{7}-1}{\sqrt{7}}=\frac{2\sqrt{7}}{\sqrt{7}}=2\)

=> B = \(\sqrt{2}\)

Bình luận (0)
DM
Xem chi tiết
NT
13 tháng 5 2022 lúc 6:54

a: \(A=\left(1-\sqrt{7}\right)\cdot\left(1+\sqrt{7}\right)=1-7=-6\)

b: \(B=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}=-4\sqrt{3}\)

c: \(C=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=2\sqrt{2}\)

Bình luận (0)
OO
Xem chi tiết
HH
30 tháng 6 2017 lúc 17:10

a.\(\left(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\right).\left(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\right)\)

\(=\left(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\right).\left(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\right)\)

\(=\left(\sqrt{3}+1-\sqrt{3}+1\right)\left(\sqrt{3}-1+\sqrt{3}+1\right)\)

\(=2.2\sqrt{3}=4\sqrt{3}\)

b.\(\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^2=\left[\frac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}-\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\right]^2\)

\(=\left(\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}\right)^2\)

\(=\left(\frac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}\right)^2=\left(\sqrt{2}\right)^2=2\)

c.\(\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-\left(2\sqrt{5}-3\right)}}=\sqrt{5-\sqrt{6-2\sqrt{5}}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)

Bình luận (0)
NH
30 tháng 6 2017 lúc 15:00

!?

em ko biết làm!

...

Bình luận (0)
TG
30 tháng 6 2017 lúc 15:02

bó tay ?????

???? 

@-@

Bình luận (0)
MT
Xem chi tiết
H24
22 tháng 8 2017 lúc 14:16

e) \(E=A-\sqrt{2}\)

\(A=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(A^2=8-2\sqrt{16-7}=8-6=2\)

\(A>0=>A=\sqrt{2}\)

\(E=A-\sqrt{2}=0\)

Bình luận (0)
LT
26 tháng 9 2017 lúc 20:58

a)\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}\)

=\(\left(6\sqrt{10}+6\sqrt{2}-10\sqrt{2}-2\sqrt{10}\right)\sqrt{3+\sqrt{5}}\)

=\(\left(4\sqrt{10}-4\sqrt{2}\right)\sqrt{3+\sqrt{5}}=\left(4\sqrt{10}-4\sqrt{2}\right)\dfrac{\sqrt{5}+1}{2}\)

=\(\dfrac{20\sqrt{2}+4\sqrt{10}-4\sqrt{10}-4\sqrt{2}}{2}\)

=\(\dfrac{16\sqrt{2}}{2}=8\sqrt{2}\)

b)\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)

=\(\dfrac{\sqrt{5}+1-\sqrt{5}+1-2}{\sqrt{2}}=0\)

c)\(\sqrt{3,5-\sqrt{6}}+\sqrt{3,5+\sqrt{6}}\)

=\(\dfrac{\sqrt{6}-1+\sqrt{6}+1}{\sqrt{2}}=2\sqrt{3}\)

d)\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{7}\)

=\(\dfrac{\sqrt{7}-1-\sqrt{7}-1+\sqrt{14}}{\sqrt{2}}=\sqrt{7}-1\)

e)\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)

=\(\dfrac{\sqrt{7}+1-\sqrt{7}+1-2}{\sqrt{2}}=0\)

Bình luận (1)
H24
23 tháng 4 2018 lúc 16:32

a) \(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right).\sqrt{3+\sqrt{5}}\)

\(=\sqrt{2}\left(\sqrt{5}+1\right).2.\left(3-\sqrt{5}\right).\sqrt{3+\sqrt{5}}\)

\(=\left(\sqrt{5}+1\right)\left(3-\sqrt{5}\right).\sqrt{6+2\sqrt{5}}\)

\(=\left(\sqrt{5}+1\right)\left(3-\sqrt{5}\right).\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=\left(\sqrt{5}+1\right)\left(3-\sqrt{5}\right).\left(\sqrt{5}+1\right)\)

\(=\left(\sqrt{5}+1\right)^2.\left(3-\sqrt{5}\right)\)

\(=\left(6+2\sqrt{5}\right)\left(3-\sqrt{5}\right)\)

\(=18-6\sqrt{5}+6\sqrt{5}-10\)

\(=8\)

Bình luận (0)