Cho ax+by=1, \(ax^2+by^2=5\),\(ax^3+by^3=7\),\(ax^4+by^4=17\).
Tính B=\(ax^{2017}+by^{2017}\)
cho hpt ax+by=1 ; ax^2+by^2=5 ; ax^3+by^3=7 ; ax^4+by^4=17
Tính ax^2007+by^2007
1. Cho \(\hept{\begin{cases}ax+by=3\\ax^2+by^2=5\\ax^3+by^3=9\end{cases}}\)và \(ax^4+by^4=17\). Tính \(ax^5+by^5\)và \(ax^{2017}+by^{2017}\)
2. Giải hệ phương trình:\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}}\)
3. Giải hệ phương trình:\(\hept{\begin{cases}\frac{2}{x}+\frac{3}{y}+\frac{3}{z}=z\\\frac{4}{xy}-\frac{3}{z^2}-\frac{2}{y}=3\end{cases}}\)
Cho ax+by=3; ax2+by2=5; ax3+by3=9; ax4+by5=17.Hãy tính ax5 + by5 và ax2014+by2014?
Bài 1: Giải hệ phương trình
a) \(\hept{\begin{cases}\left(x+y\right)\left(x^2+y^2\right)=15\\\left(x-y\right)\left(x^2-y^2\right)=3\end{cases}}\)
b) \(\hept{\begin{cases}x^2+y^2=1\\\sqrt[2017]{x}-\sqrt[2017]{y}=\left(\sqrt[2018]{y}-\sqrt[2018]{x}\right)\left(x+y+xy+2019\right)\end{cases}}\)
c) \(\hept{\begin{cases}xz=x+4\\2y^2=7xz-3x-14\\x^2+z^2=35-y^2\end{cases}}\)
Bài 2: Cho a,b,x,y thỏa mãn hệ:
\(ax+by=3\)
\(ax^2+by^2=5\)
\(ax^3+by^3=9\)
\(ax^4+by^4=17\)
Tính:
\(A=ax^5+by^5\)
\(B=ax^{2017}+by^{2017}\)
Cho a, b, c là cac số TM: \(\left\{{}\begin{matrix}ax+by=3\\ax^2+by^2=5\\ax^3+by^3=9\\ax^4+by^4=17\end{matrix}\right.\)
Tính \(A=ax^5+by^5\) và \(B=ax^{2015}+by^{2015}\)
Dùng máy tính casio thực hiện quy trình bấm phím liên tục như sau:
X=X+1:B=2B:A=A+B (X=1;C=1;A=3)
Thì ta được ax5+by5=33
Ấn lt bn xẽ biết ax2015+by2015
cho ax+by=3; ax2+by2=5;ax3+by3=9;ax4+by4=17
tim p=ax2018+by2018
Ta có :\(ax^3+by^3=9\Leftrightarrow\left(x+y\right)\left(ax^2+by^2\right)-xy\left(ax+by\right)=9\)
\(\Leftrightarrow5\left(x+y\right)-3xy=9\) (1)
Và \(ax^4+by^4=\left(x+y\right)\left(ax^3+by^3\right)-xy\left(ax^2+by^2\right)=17\)
\(\Leftrightarrow9\left(x+y\right)-5xy=17\) (2)
Từ (1) ;(2) ta có hệ PT : \(\hept{\begin{cases}5\left(x+y\right)-3xy=9\\9\left(x+y\right)-5xy=17\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=3\\xy=2\end{cases}}\)
\(\Rightarrow x;y\) là nghiệm của \(PT:t^2-3t+2\) là \(1;2\)
Do vai trò của \(x;y\) như nhau nên ta cần xét TH \(x=1;y=2\) thay vào các PT trên đề bài ta được :
\(HPT:a+2b=3;a+4b=5;a+8b=9;a+16b=17\)
\(\Rightarrow a=b=1\)
\(\Rightarrow p=ax^{2018}+by^{2018}=1+2^{2018}\)
Bài 1 cho a;b;c thỏa mãn\(\hept{\begin{cases}ax+by=3\\ax^2+by^2=5\\ax^3+by^3=9;ax^4+by^4=17\end{cases}}\).Tính\(A=ax^5+by^5\)và \(B=ax^{2015}+by^{2015}\)
Bài 2: Giải hệ pt\(\hept{\begin{cases}x^3+y^3+x^2\left(y+z\right)=xyz+14\\z^3+y^3+y^2\left(z+x\right)=xyz-21\\z^3+x^3+z^2\left(x+y\right)=xyz+7\end{cases}}\)
https://l.facebook.com/l.php?u=https%3A%2F%2Fdiendan.hocmai.vn%2Fthreads%2Flai-mot-bai-hoi-bi-kho-ne.226600%2F&h=ATPqu0VSzda9HN6swPmBXeYI_mLVFweVVBz72hMQdgv8WnX0mStwGwBOxPLOstENmMST5KDKsbNuoFCvtOGM2CoqQpz94ahFl9MGizb0_iA8MRBBsDChfE7x3A22qDBUSKGjOjCJFPZu
ai giúp mik với
Cho\(\hept{\begin{cases}ax+by=3\\ax^2+by^2=5\\ax^3+by^3=9\end{cases}}\) và \(ax^4+by^4=17\) .Tính \(A=ax^5+by^5\) và \(B=ax^{2001}+by^{2001}\)
Bài khó quá nên mik ko làm được nhưng cần gấp lắm. mik học dốt lắm
Cho a+b=1, ax+by=2,ax^2 +by^2= 3, ax^3 +by^3= 3. chung minh 4< ax^3 +by^3< 4.5
ax^2 + by^2 = 3 chứ không phẢI ax^3 +by^3 = 3 đâu ạ