Cho a, b, c là cac số TM: \(\left\{{}\begin{matrix}ax+by=3\\ax^2+by^2=5\\ax^3+by^3=9\\ax^4+by^4=17\end{matrix}\right.\)
Tính \(A=ax^5+by^5\) và \(B=ax^{2015}+by^{2015}\)
cho a+b=6, ax+by=10, ax2 + by2 =24, ax3 + by3 =62
Tính M=ax4 + by4
Cho \(ax^3=by^3=cz^3;\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1.\)C/m \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
Cho x, y, z khác 0 và a, b, c dương thoả mãn ax+by+cz=0 và a+b+c=2017. Tính giá trị của biểu thức: \(P=\dfrac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
Cho ax3=by3=cz3 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Cmr:\(\sqrt[3]{ax^2+by^2+cz^2}=3\sqrt{a}+3\sqrt{b}+3\sqrt{c}\)
Cho : bz+ay/x*(-ax+by+cz)=cx+az/y*(ax-by+cz)=ay+bx/z(ax+by-cz)
C/m : ay+bx/c=bz+ay/a=cx+az/b
Chứng minh rằng nếu \(\text{ax}^3=by^3=cz^3\) và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) thì
\(\sqrt[3]{\text{ax}^2+by^2+cz^2}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
cho 3 so thuc x,y,z khac khong va thoa man hai dieu kien \(ax^3=by^3=cz^3\) va \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)
chung minh rang : \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
1. Cho nửa đường tròn tâm O đường kính AB. Vẽ các tiếp tuyến Ax, By ( Ax, By cùng thuộc nửa mặt phẳng chứa nửa đường tròn bờ AB). Gọi M là điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By tại C và D.
a) Chứng minh đường tròn đường kính CD tiếp xúc với AB.
b) Tìm vị trí của điểm M để hình thang ABDC có chu vi nhỏ nhất.
c) Kẻ MH⊥AB tại H. Chứng minh rằng BC đi qua trung điểm I của MH.
(Chỉ cần làm câu c thôi mấy câu để có số liệu thôi)