Những câu hỏi liên quan
LP
Xem chi tiết
TL
10 tháng 2 2023 lúc 19:23

không biết :))))

Bình luận (0)
DT
Xem chi tiết
ND
22 tháng 2 2017 lúc 19:43

\(A^2=\left(2\sqrt{x-4}+\sqrt{8-x}\right)^2\le\left(2^2+1^2\right)\left(x-4+8-x\right)=20..\)

\(A\le2\sqrt{5}..\)

Bình luận (0)
DT
22 tháng 2 2017 lúc 20:34

Bài a, c tìm GTLN thì làm được rồi, chỉ không biết tìm GTNN bằng BĐT như thế nào?
 

Bình luận (0)
NH
Xem chi tiết
KM
Xem chi tiết
NL
16 tháng 3 2019 lúc 15:47

\(A\ge\sqrt{\left(1+1\right)\left(1-x+x+1\right)}+2\sqrt{x}\ge2+2\sqrt{x}\ge2\)

\(\Rightarrow A_{min}=2\) khi \(\left\{{}\begin{matrix}1-x=x+1\\2\sqrt{x}=0\end{matrix}\right.\) \(\Rightarrow x=0\)

Bình luận (0)
LN
Xem chi tiết
NM
22 tháng 11 2021 lúc 14:57

\(a,\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}=\dfrac{x^2+x+1+1}{\sqrt{x^2+x+1}}=\sqrt{x^2+x+1}+\dfrac{1}{\sqrt{x^2+x+1}}\left(1\right)\)

Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{\sqrt{x^2+x+1}\cdot\dfrac{1}{\sqrt{x^2+x+1}}}=2\)

Dấu \("="\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Bình luận (0)
AC
Xem chi tiết
DK
Xem chi tiết
DH
Xem chi tiết
PT
Xem chi tiết