Tìm GTLN và GTNN của các biểu thức sau:
a) A = \(2\sqrt{x-4}+\sqrt{8-x}\)
b) B = \(\left(1+x^2\right)\left(1-x\right)\) với \(-1\le x\le1\)
c) C = \(5\sqrt{x+1}+3\sqrt{6-x}\)
cho \(0\le x,y,z\le1.\)Tìm GTLN của biểu thức \(P=\sqrt{\left|y-z\right|}+\sqrt{\left|z-x\right|}+\sqrt{\left|x-y\right|}.\)
TÌM GTNN CỦA HÀM SỐ SAU:
a) y=\(\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}\)
TÌM GTLN CỦA HÀM SỐ SAU:
b)y= \(x^2\sqrt{9-x^2}với-3\le x\le3\)
c)y=\(\left(1-x\right)^3\left(1+3x\right)với\dfrac{-1}{3}\le x\le1\)
Cho \(0\le x\le1\). Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M = \(\sqrt{x-\sqrt{x}+1}+\sqrt{\sqrt{x}-x+1}\)
Cho \(1\le x\), tìm GTNN của biểu thức \(P=x-\sqrt{x-1}-3\sqrt{x+7}+28\)
tìm GTLN của biểu thức
\(A=\sqrt{x-x^3}+\sqrt{x+x^3}\)
với \(0\le x\le1\)
1. Cho số nguyên dương x.
a, Tìm GTNN của biểu thức \(P=\sqrt[3]{10^x-2}+\sqrt{x^x+3}+\sqrt{\left(\pi^2+1\right)^{x-1}+3}\).
b, Tìm GTLN của biểu thức \(Q=\sqrt[5]{\left(6x^2+5\right)^{1-x}}+\sqrt[3]{3-2x^2}\).
c, Chứng minh rằng: \(\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\ge1\).
2. Cho tam giác OEF vuông tại O có OE = a, OF = b, EF = c thỏa mãn điều kiện a, b, c là các số dương. Chứng minh rằng biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) không nhận bất kì giá trị nguyên dương nào.
cho biểu thức: P=\(\sqrt{\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1}\)
Rút gọn P với \(0\le x\le1\)
Cho biểu thức A = \(\left(\dfrac{x-\sqrt{x}+1}{x\sqrt{x}+1}-\dfrac{1}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}\) với x>0 x\(\ne\)1
a, rút gọn biểu thức b, tìm giá trị của x để A \(\le\dfrac{3}{\sqrt{x}}\)