Bằng đồ thị hãy chứng tỏ rằng hệ phương trình sau luôn có nghiệm duy nhất với bất kì giá trị của a
Cho hệ phương trình 2x + y = 3 và 3x+2y= m (m là tham số)
a) Chứng tỏ rằng hệ phương trình luôn có một nghiệm duy nhất với mọi m. tìm nghiệm đó
b) với giá trị nào của m thì hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x >0 và y>0 (x=6-m; y=2m-9)
Cho hệ phương trình\(\left\{{}\begin{matrix}3x-my=-9\\mx+2y=16\end{matrix}\right.\)
b) Chứng tỏ rằng hệ phương trình luôn luôn có nghiệm duy nhất với mọi m
d) Tìm giá trị nguyên của m để hai đường thẳng của hệ cắt nhau tại một điểm nằm trong góc phần tư thứ IV trên mặt phẳng tọa độ Oxy
e) Với trị nguyên nào của m để hệ có nghiệm (x ; y) thỏa mãn x + y = 7
Mình đang cần gấp, nhờ các bạn!!!
Cho hệ pt: x+my=9
mx-3y=4
1/ Với giá trị nào của m để hệ có nghiệm (-1;3)
2/ Chứng tỏ răng hệ phương trình luôn luôn có nghiệm duy nhất
3/với giá trị nào của m để nghiêm(x;y) thỏa mãn hệ thức: x-3y=[28/(m^2+3)]-3
cho hệ phương trình\(\hept{\begin{cases}3x-my=-9\\mx+2y=16\end{cases}}\)
a) giải hệ phương trình khi m = 5
b) chứng tỏ rằng hệ phương trình luôn luôn có nghiệm duy nhất với mọi m
c) định m để hệ có nghiệm (x ; y) = (1,4 ; 6,6)
d) với trị nguyên nào của m để hệ có nghiệm (x ; y) thỏa mãn x + y = 7
giúp mình với mình cần nộp trong ngày 17/2/2020
Giải mấy bài này mệt ghê ~
a,Thay m = 5 vào PT \(\hept{\begin{cases}3x-my=-9\\mx+2y=16\end{cases}}\)
\(< =>\hept{\begin{cases}3x-5y=-9\\5x+2y=16\end{cases}}\)
\(< =>\hept{\begin{cases}15x-25y=-45\\15x+6y=48\end{cases}}\)
\(< =>\hept{\begin{cases}31y=93\\3x-5y=-9\end{cases}}\)
\(< =>\hept{\begin{cases}y=3\\3x=6\end{cases}}\)
\(< =>\hept{\begin{cases}y=3\\x=2\end{cases}}\)
b,Ta thay : \(\hept{\begin{cases}y=3\\x=2\end{cases}}\)vào PT ta đc :
\(\hept{\begin{cases}6-3m=-9\\2m+6=16\end{cases}}\)
\(< =>\hept{\begin{cases}m=5\\m=5\end{cases}}\)(đề sai ? hay do mk ngu ?)
c,bạn thay nghiệm vào là đc nhé <3
Bài 1 Cho hệ phương trình mx−y=1 va x+4.(m+1)y=1. Tìm m nguyên để hệ phương trình có no duy nhất là no nguyên
Bài 2
Bài 2
Cho hệ phương trình x+my=1 và mx−y=−m
a) Chứng minh rằng hệ phương trình đã cho luôn có nghiệm duy nhất với mọi m ( đã xong )
b)Tìm m để hệ phương trình có nghiệm duy nhất (x, y) thỏa mãn x<1 và y<1 (đã xong )
c)tìm hệ thức liên hệ giữa x và y không phụ thuộc vào giá trị của m
Bài 3
Cho hệ phương trình x−my=2−4m và mx+y=3m+1) Giải hệ phương trình khi m = 2 ( xong )
b) Chứng minh hệ luôn có nghiệm với mọi giá trị của m . Giả sử (xo ,yo) là một nghiệm của hệ .Chứng minh đẳng thức x2o+y2o−5(x2o+y2o)+10=0xo2+yo2−5(xo2+yo2)+10=0
Mọi người giúp mk làm câu c bài 2 , 3 với
Bài 1: Cho hệ phương trình \(\left\{{}\begin{matrix}x+my=9\\mx-3y=4\end{matrix}\right.\) (m là tham số)
a) Giải hệ phương trình với m = 3
b) Tìm m để hệ có nghiệm x= -1, y=3
c) Chứng tỏ hệ phương trình có nghiệm duy nhất với mọi giá trị của tham số m
(mink đag cần gấp)
a. Bạn tự giải
b. Thế cặp nghiệm x=-1, y=3 vào hệ ban đầu ta được:
\(\left\{{}\begin{matrix}-1+3m=9\\-m-9=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3m=10\\-m=13\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
c. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=9m\\mx-3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+3\right)y=9m-4\\mx-3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{9m-4}{m^2+3}\\x=\dfrac{4m+27}{m^2+3}\end{matrix}\right.\)
Vậy với mọi m thì hệ luôn có nghiệm duy nhất như trên
Cho hệ pt
\(\left\{{}\begin{matrix}x+my=9\\mx-3y=4\end{matrix}\right.\).
a) Chứng tỏ rằng hệ pt luôn luôn có nghiệm duy nhất vs mọi m
b) Với giá trị nào của m để hệ có nghiệm (x;y) thỏa mãn hệ thức
\(x-3y=\dfrac{28}{m^2+3}-3\)
\(\left\{{}\begin{matrix}x+my=9\\mx-3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9-my\\m\left(9-my\right)-3y=4\end{matrix}\right.\)(*)
(*) <=> \(9m-m^2y-3y=4\)
<=> \(-y\left(m^2+3\right)=4-9m\)
Vì \(m^2+3\ge3\) >0 với mọi m
=> m2 + 3 khác 0
=> luôn có nghiệm y = \(\dfrac{9m-4}{m^2+3}\) với mọi m
b) Khi đó x= \(9-m.\dfrac{9m-4}{m^2+3}=\dfrac{9m^2+27-9m^2+4m}{m^2+3}=\dfrac{4m^2+27}{m^2+3}\)
Để \(x-3y=\dfrac{28}{m^2+3}-3\)
=> \(4m+27-27m+12=28-3m^2+9\)
<=> \(3m^2-3m-20m+20=0\)
<=> \(3m\left(m-1\right)-20\left(m-1\right)=0\)
<=> \(\left(3m-20\right)\left(m-1\right)=0\)
<=> \(\left[{}\begin{matrix}m=\dfrac{20}{3}\\m=1\end{matrix}\right.\)
\(\hept{\begin{cases}2x-my=-3\\mx+3y=4\end{cases}}\)Cho hệ phương trình : 1 . Chứng minh rằng hệ phương trình luôn có nghiệm duy nhất khi m thay đổi
2 . Tìm giá trị nguyên lớn nhất của m để hệ có nghiệm ( x0;y0) thỏa mãn
giúp em với bài tập Tết ạ ! k làm cô giết em
Bằng đồ thị chứng tỏ các hệ phương trình sau luôn có nghiệm duy nhất với bất kì giá trị nào của a:
a) \(\left\{{}\begin{matrix}x=a\\x+y=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x-y=3\\y=a\end{matrix}\right.\)