Những câu hỏi liên quan
HN
Xem chi tiết
H24
Xem chi tiết
AH
10 tháng 12 2023 lúc 23:55

Lời giải:

$A$ thuộc trục tung nên $x_A=0$

$y_A=2x_A+m+5=2.0+m+5=m+5$. Vậy $A(0,m+5)$

$B$ thuộc trục hoành nên $y_B=0$

$0=y_B=2x_B+m+5$

$\Rightarrow x_B=\frac{-m-5}{2}$

Vậy $B(\frac{-m-5}{2},0)$
\(AB=\sqrt{(x_A-x_B)^2+(y_A-y_B)^2}=\sqrt{5}\)

$\Leftrightarrow (x_A-x_B)^2+(y_A-y_B)^2=5$

$\Leftrightarrow (0-\frac{-m-5}{2})^2+(m+5-0)^2=5$

$\Leftrightarrow \frac{(m+5)^2}{4}+(m+5)^2=5$

$\Leftrightarrow (m+5)^2=4\Leftrightarrow m+5=\pm 2$

$\Rightarrow m=-3$ hoặc $m=-7$

Bình luận (0)
PA
Xem chi tiết
KT
6 tháng 1 2019 lúc 22:47

Bài 1:

Đặt:  (d):  y = (m+5)x + 2m - 10

Để y là hàm số bậc nhất thì:  m + 5 # 0    <=>   m # -5

Để y là hàm số đồng biến thì: m + 5 > 0  <=>  m > -5

(d) đi qua A(2,3) nên ta có:

3 = (m+5).2 + 2m - 10

<=>  2m + 10 + 2m - 10 = 3

<=>  4m = 3

<=> m = 3/4

Bình luận (0)
KT
6 tháng 1 2019 lúc 22:54

(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:

9 = (m+5).0 + 2m - 10

<=> 2m - 10 = 9

<=>  2m = 19

<=> m = 19/2

(d) đi qua điểm 10 trên trục hoành nên ta có:

0 = (m+5).10 + 2m - 10

<=> 10m + 50 + 2m - 10 = 0

<=>  12m = -40

<=> m = -10/3

(d) // y = 2x - 1  nên ta có:

\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\)   <=>   \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\)  <=>  \(m=-3\)

Bình luận (0)
KT
6 tháng 1 2019 lúc 23:04

Giả sử (d) luôn đi qua điểm cố định M(x0; y0)

Ta có:  \(y_0=\left(m+5\right)x_0+2m-10\)

<=>  \(mx_0+5x_0+2m-10-y_0=0\)

<=>  \(m\left(x_o+2\right)+5x_0-y_0-10=0\)

Để M cố định thì:  \(\hept{\begin{cases}x_0+2=0\\5x_0-y_0-10=0\end{cases}}\)   <=>   \(\hept{\begin{cases}x_0=-2\\y_0=-20\end{cases}}\)

Vậy...

Bình luận (0)
DT
Xem chi tiết
NT
18 tháng 12 2022 lúc 22:12

b: Để hai đường song song thì m-2=2

=>m=4

c: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\x=\dfrac{-2}{m-2}\end{matrix}\right.\Leftrightarrow OA=\dfrac{2}{\left|m-2\right|}\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\Leftrightarrow OB=2\)

SAOB=1

=>1/2*4/|m-2|=1

=>4/|m-2|=2

=>|m-2|=2

=>m=4 hoặc m=0

Bình luận (0)
DV
Xem chi tiết
UT

Để tìm m để đồ thị hàm số cắt hai trục Ox và Oy tại A và B sao cho chu vi tam giác OAB là 3 + căn 5, ta cần xác định tọa độ của A và B.

Điểm A nằm trên trục Ox, nên tọa độ của A là (x_A, 0). Thay vào phương trình hàm số y = mx + 2, ta có:

0 = mx_A + 2
=> mx_A = -2
=> x_A = -2/m

Điểm B nằm trên trục Oy, nên tọa độ của B là (0, y_B). Thay vào phương trình hàm số y = mx + 2, ta có:

y_B = m*0 + 2
=> y_B = 2

Chu vi tam giác OAB được tính bằng công thức chu vi tam giác:

chu_vi = AB + OA + OB

Với OA = x_A và OB = y_B, ta có:

chu_vi = AB + x_A + y_B

chu_vi = AB + (-2/m) + 2

chu_vi = AB - (2/m) + 2

Theo đề bài, chu vi tam giác OAB là 3 + căn 5, nên ta có:

3 + căn 5 = AB - (2/m) + 2

căn 5 = AB - (2/m) + 1

AB = căn 5 + (2/m) - 1

Ta đã có tọa độ của A và B, và chu vi tam giác OAB. Giờ ta sẽ tính độ dài AB:

AB = căn((x_A - 0)^2 + (y_B - 0)^2)

AB = căn((-2/m)^2 + 2^2)

AB = căn(4/m^2 + 4)

AB = căn(4(1/m^2 + 1))

AB = 2căn(1/m^2 + 1)

So sánh với công thức đã tính được trước đó:

AB = căn 5 + (2/m) - 1

Ta có:

2căn(1/m^2 + 1) = căn 5 + (2/m) - 1

Bình phương cả hai vế của phương trình:

4(1/m^2 + 1) = 5 + 4/m^2 + 1 - 4/m

4/m^2 + 4 = 6 + 4/m^2 - 4/m

8/m^2 = 2 - 4/m

Nhân cả hai vế của phương trình cho m^2:

8 = 2m^2 - 4

2m^2 = 12

m^2 = 6

m = ±√6

Vậy, để đồ thị hàm số cắt hai trục Ox và Oy tại A và B sao cho chu vi tam giác OAB là 3 + căn 5, ta có hai giá trị của m: √6 và -√6.

Bình luận (1)
H24
Xem chi tiết
LN
Xem chi tiết
YA
Xem chi tiết
NM
30 tháng 11 2021 lúc 19:36

\(1,m=1\Leftrightarrow y=2x+4\\ 2,\text{PT giao Ox: }y=0\Leftrightarrow\left(3m-1\right)x=-4\Leftrightarrow x=\dfrac{4}{1-3m}\Leftrightarrow A\left(\dfrac{4}{1-3m};0\right)\Leftrightarrow OA=\dfrac{4}{\left|1-3m\right|}\\ \text{PT giao Oy: }x=0\Leftrightarrow y=4\Leftrightarrow B\left(0;4\right)\Leftrightarrow OB=4\\ S_{OAB}=\dfrac{1}{2}OA\cdot OB=6\\ \Leftrightarrow\dfrac{1}{2}\cdot\dfrac{4}{\left|1-3m\right|}\cdot4=6\\ \Leftrightarrow\dfrac{8}{\left|1-3m\right|}=6\\ \Leftrightarrow\left|1-3m\right|=\dfrac{4}{3}\Leftrightarrow\left[{}\begin{matrix}1-3m=\dfrac{4}{3}\\3m-1=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{1}{9}\\m=\dfrac{7}{9}\end{matrix}\right.\)

Bình luận (0)
HB
Xem chi tiết