Những câu hỏi liên quan
BB
Xem chi tiết
KN
6 tháng 3 2020 lúc 9:13

\(ĐKXĐ:x\ne m;x\ne1\)

\(\frac{x+2}{x-m}=\frac{x+1}{x-1}\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=\left(x-m\right)\left(x+1\right)\)

\(\Leftrightarrow x^2+x-2=x^2-\left(m-1\right)x-m\)

\(\Leftrightarrow x-2=-\left(m-1\right)x-m\)

\(\Leftrightarrow x-2+\left(m-1\right)x+m=0\)

\(\Leftrightarrow mx+\left(m-2\right)=0\)

Đây là phương trình bậc nhất nên luôn có 1 nghiệm

Vậy pt có nghiệm duy nhất với mọi m.

Bình luận (0)
 Khách vãng lai đã xóa
TP
Xem chi tiết
VT
Xem chi tiết
TH
Xem chi tiết
DH
16 tháng 1 2020 lúc 11:31

Phương trình đưa được về dạng ax + b = 0

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
8 tháng 7 2018 lúc 12:12

Xét hệ x − ( m − 2 ) y = 2 ( m − 1 ) x − 2 y = m − 5

⇔ ( m − 2 ) y = x − 2 2 y = ( m − 1 ) x − m + 5 ⇔ ( m − 2 ) y = x − 2 y = m − 1 2 x − m 2 + 5 2

TH1: Với m – 2 = 0 ⇔ m = 2 ta có hệ 0. y = x − 2 y = 1 2 x + 3 2 ⇔ x = 2 y = 1 2 x + 3 2

Nhận thấy hệ này có nghiệm duy nhất vì hai đường thẳng x = 2 và y = 1 2 x + 3 2 cắt nhau

TH2: Với m – 2 ≠ 0m ≠ 2 ta có hệ: ( m − 2 ) y = x − 2 y = m − 1 2 x − m 2 + 5 2 ⇔ y = 1 m − 2 x − 2 m − 2 y = m − 1 2 x − m 2 + 5 2

 

Để hệ phương trình đã cho có nghiệm duy nhất thì hai đường thẳng: d : y = 1 m − 2 x − 2 m − 2 và d ' : y = m − 1 2 x − m 2 + 5 2 cắt nhau

⇔ 1 m − 2 ≠ m − 1 2 ⇔ m   –   1 m   –   2 ≠ 2 ⇔   m 2 – 3 m + 2 ≠ 2   ⇔ m 2 – 3 m   0

Suy ra m ≠ {0; 2; 3}

Kết hợp cả TH1 và TH2 ta có m ≠ {0; 3}

Vậy hệ phương trình đã cho có nghiệm duy nhất khi m ≠ {0; 3}

Đáp án: C

Bình luận (0)
PL
Xem chi tiết
DN
12 tháng 2 2019 lúc 18:58

Thay x=-1 vào (*), ta được:

\(-m^2+4=2m+4\)

\(\Leftrightarrow-m^2-2m=4-4\)

\(\Leftrightarrow-m\left(m+2\right)=0\)

\(\Leftrightarrow-m=0\)hoặc \(m+2=0\)

\(\Leftrightarrow m=0\)hoặc \(m=-2\)

Vậy khi m = 0, m = -2 thì (*) có nghiệm duy nhất là x = -1

Bình luận (0)
KO
Xem chi tiết
HN
17 tháng 8 2016 lúc 13:17

a) Nếu m = -1 thì : \(4x-3=0\Leftrightarrow x=\frac{3}{4}\) => pt có một nghiệm

Nếu \(m\ne-1\) , xét \(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-2\right)=m^2-2m+1-\left(m^2-m-2\right)=-m+3\)

Để pt có hai nghiệm phân biệt thì \(\Delta>0\) , tức là \(3-m>0\Leftrightarrow m< 3\)

Vậy để pt có hai nghiệm phân biệt thì \(\begin{cases}m< 3\\m\ne-1\end{cases}\)

b) Thay x = 2 vào pt đã cho  , tìm được m = -6

Suy ra pt : \(-5x^2+14x-8=0\Leftrightarrow\left(5x-4\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{4}{5}\end{array}\right.\)

Vậy nghiệm còn lại là x = 4/5

Bình luận (0)
HN
17 tháng 8 2016 lúc 13:24

c) Áp dụng hệ thức Vi-et , ta có : \(\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1.x_2=m-2\end{cases}\)

\(\frac{1}{x_1}+\frac{1}{x_2}=\frac{7}{4}\Leftrightarrow4\left(x_1+x_2\right)=7x_1.x_2\)

\(\Rightarrow4.\left(2m-2\right)=7.\left(m-2\right)\Leftrightarrow8m-8=7m-14\Leftrightarrow m=-6\)

d) Ta có : \(A=2\left(x_1^2+x_2^2\right)+x_1.x_2=2\left(x_1+x_2\right)^2-3x_1.x_2=8\left(m-1\right)^2-3\left(m-2\right)\)

\(=8m^2-19m+14=8\left(m-\frac{19}{16}\right)^2+\frac{87}{32}\ge\frac{87}{32}\)

=> Min A = 87/32 <=> m = 19/16

 

Bình luận (0)
JV
Xem chi tiết
GN
Xem chi tiết
TD
3 tháng 1 2016 lúc 15:07

chtt

Bình luận (0)