Những câu hỏi liên quan
H24
Xem chi tiết
NM
20 tháng 10 2021 lúc 16:05

\(\Rightarrow4A=4+4^2+4^3+...+4^{100}\\ \Rightarrow4A-A=\left(4+4^2+4^3+...+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\\ \Rightarrow3A=4^{100}-1< 4^{100}=B\\ \Rightarrow A< \dfrac{B}{3}\)

Bình luận (0)
DL
Xem chi tiết
NH
22 tháng 5 2023 lúc 18:11

        A =          \(\dfrac{1}{4^2}\) + \(\dfrac{1}{4^3}\) + ...........+ \(\dfrac{1}{4^{100}}\)

       A =          \(\dfrac{1}{4^2}\) +  \(\dfrac{1}{4^3}\)+...+ \(\dfrac{1}{4^{99}}\)+  \(\dfrac{1}{4^{100}}\)

4 \(\times\) A =   \(\dfrac{1}{4}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{4^3}\) +...+ \(\dfrac{1}{4^{99}}\)

4A - A =   \(\dfrac{1}{4}\) - \(\dfrac{1}{4^{100}}\)

      3A =  \(\dfrac{1}{4}\) - \(\dfrac{1}{4^{100}}\)

        A = ( \(\dfrac{1}{4}\) - \(\dfrac{1}{4^{100}}\)): 3

        A =   \(\dfrac{1}{12}\) - \(\dfrac{1}{3\times4^{100}}\)

 

Bình luận (0)
PA
22 tháng 5 2023 lúc 18:12

Đặt A=1/4^2 +...+1/4^100

       4A=1/4+...+1/4^99

      4A-A=(1/4+...+1/4^99)-(1/4^2+...+1/4^100)

     3A=1/4-1/4^100

      A=(1/4-1/4^100)/3

Vậy...

Bình luận (0)
Xem chi tiết
NT
3 tháng 4 2021 lúc 22:15

Bài 2: 

b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)

hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)

Bình luận (0)
NT
3 tháng 4 2021 lúc 22:11

Bài 1: 

a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)

\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)

\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)

\(=75\cdot\left(-4\right)+603\)

\(=603-300=303\)

Bình luận (0)
NT
3 tháng 4 2021 lúc 22:13

Bài 1: 

c) Ta có: \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(\Leftrightarrow3B=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)

\(\Leftrightarrow3B-B=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)

\(\Leftrightarrow2B=1-\dfrac{1}{3^{99}}\)

\(\Leftrightarrow B=\dfrac{3^{99}-1}{3^{99}\cdot2}\)

Bình luận (0)
Xem chi tiết
NT
4 tháng 4 2021 lúc 14:08

Bài 2: 

a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ

mà số nguyên tố chẵn duy nhất là 2

nên số lẻ còn lại là 599(thỏa ĐK)

Vậy: Hai số nguyên tố cần tìm là 2 và 599

Bình luận (0)
H24
4 tháng 4 2021 lúc 14:48

b,Gọi ƯCLN(21n+4,14n+3)=d

21n+4⋮d ⇒42n+8⋮d

14n+3⋮d ⇒42n+9⋮d

(42n+9)-(42n+8)⋮d

1⋮d ⇒ƯCLN(21n+4,14n+3)=1

Vậy phân số 21n+4/14n+3 là phân số tối giản

 

Bình luận (0)
H24
4 tháng 4 2021 lúc 15:24

c,xy-2x+5y-12=0

xy-2x+5y-12+2=0+2

xy-2x+5y-10=2

xy-2x+5y-5.2=-2

x.(y-2)+5.(y-2)=2

(y-2).(x+5)=2

Sau đó bạn tự lập bảng 

Bình luận (0)
N6
Xem chi tiết
TD
28 tháng 2 2016 lúc 18:36

A=\(\frac{\left(49+1\right).49}{2}=1225\)

B/3=4100/3=1336,6666666666666....

Từ trên ta suy ra A<B/3

Bình luận (0)
NN
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
AH
30 tháng 9 2023 lúc 10:38

a.

$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$

$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$

$\Rightarrow S=2^{2018}-1$

b.

$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$

$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$

$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
 

Bình luận (0)
AH
30 tháng 9 2023 lúc 10:39

Câu c, d bạn làm tương tự a,b. 

c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$

d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$

Bình luận (0)
H24
Xem chi tiết
NT
8 tháng 8 2023 lúc 15:39

D=4+4^2+...+4^n

=>\(4\cdot D=4^2+4^3+...+4^{n+1}\)

=>\(3D=4^{n+1}+4^n+...+4^3+4^2-4^n-...-4^2-4\)

=>\(3D=4^{n+1}-4\)

=>\(D=\dfrac{4^{n+1}-4}{3}\)

Bình luận (0)
HP
Xem chi tiết
NT
19 tháng 11 2023 lúc 11:54

Sửa đề:\(A=4+4^2+4^3+...+4^{21}\)

=>\(4A=4^2+4^3+...+4^{22}\)

=>\(4A-A=4^{22}+4^{21}+...+4^3+4^2-4^{21}-...-4^3-4^2\)

=>\(3A=4^{22}-4^2\)

=>\(A=\dfrac{4^{22}-4^2}{3}\)

\(A=4+4^2+4^3+...+4^{21}\)

\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+...+\left(4^{19}+4^{20}+4^{21}\right)\)

\(=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{19}\left(1+4+4^2\right)\)

\(=21\left(4+4^4+...+4^{19}\right)⋮21\)

Bình luận (0)