Những câu hỏi liên quan
HK
Xem chi tiết
NT
20 tháng 8 2023 lúc 14:23

Ta có :

\(\left(a-b-c\right)^2=a^2+b^2+c^2-2ab-2bc-2ac\)

mà theo đề bài \(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow\left(a-b-c\right)^2=-ab-bc-ac=0\)

\(\Rightarrow\left(a-b-c\right)^2=-\left(ab+bc+ac\right)=0\)

mà \(-\left(ab+bc+ac\right)\le0\)

\(\Rightarrow a=b=c=0\)

\(\Rightarrow dpcm\)

Bình luận (0)
DA
Xem chi tiết
PB
17 tháng 1 2022 lúc 16:23
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
NT
19 tháng 2 2022 lúc 8:21

a: \(VT=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=a^2c^2+a^2d^2+b^2d^2+b^2c^2\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(c^2+d^2\right)\left(a^2+b^2\right)\)

b: Bạn ghi lại đề đi bạn

Bình luận (0)
LH
Xem chi tiết
NT
18 tháng 2 2022 lúc 15:22

a: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+b^2d^2-2abcd+a^2d^2-2abcd+b^2c^2\)

\(=a^2c^2+a^2d^2+b^2d^2+b^2c^2\)

\(=\left(c^2+d^2\right)\left(a^2+b^2\right)\)

b: \(\left(ac+bd\right)^2< =\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\Leftrightarrow a^2c^2+2abcd+b^2d^2-a^2c^2-a^2d^2-b^2c^2-b^2d^2< =0\)

\(\Leftrightarrow-a^2d^2+2abcd-b^2c^2< =0\)

\(\Leftrightarrow\left(ad-bc\right)^2>=0\)(luôn đúng)

Bình luận (0)
H24
18 tháng 2 2022 lúc 15:28

a) \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2adbc+b^2c^2\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

\(=\left(a^2c^2+a^2d^2\right)+\left(b^2d^2+b^2c^2\right)\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

b) \(\left(a^2+b^2\right)\left(c^2+d^2\right)-\left(ac+bd\right)^{^2}\)

\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2-a^2c^2-2abcd-b^2d^2\)

\(=a^2d^2+b^2c^2-2abcd\)

\(=\left(ad\right)^2-2ad.bc+\left(bc\right)^2\)

\(=\left(ad-bc\right)^2\ge0\)

\(=\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)

Bình luận (0)
NK
23 tháng 8 2023 lúc 19:14

dduungg

 

Bình luận (0)
HY
Xem chi tiết
VC
4 tháng 9 2017 lúc 19:04

ta có ĐPCM 

\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\) 

<=> \(a^2c^2+2abcd+b^2d^2+a^2d^2+b^2c^2-2abcd=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

<=> \(a^2b^2+a^2d^2+b^2c^2+b^2d^2=a^2c^2+a^2d^2+b^2c^2+d^2b^2\) (luôn đúng )

Bình luận (0)
VC
4 tháng 9 2017 lúc 19:07

b) ta có BĐT cần chứng minh \(\left(ax+by\right)^2< =\left(a^2+b^2\right)\left(x^2+y^2\right)\)

                                               <=> \(a^2x^2+2axby+b^2y^2< =a^2x^2+a^2y^2+b^2x^2+b^2y^2\)

                                              <=> \(0< =a^2y^2-2axby+b^2x^2\)

                                              <=> \(\left(ay-bx\right)^2>=0\) (luôn đúng )

Bình luận (0)
PH
4 tháng 9 2017 lúc 20:13

a) xets vt\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+b^2d^2+2abcd+a^2d^2+b^2c^2-2abcd=a^2c^2+b^2d^2+a^2d^2+b^2c^2=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\) =VP (đpcm)

Bình luận (0)
H24
Xem chi tiết
LT
3 tháng 8 2021 lúc 17:28

undefined

hok

tốt 

nha

Bình luận (0)
 Khách vãng lai đã xóa
H24
11 tháng 2 2022 lúc 13:35

a) Ta có 

Bình luận (0)
NK
23 tháng 8 2023 lúc 19:14

lom

 

Bình luận (0)
TA
Xem chi tiết
NK
23 tháng 8 2023 lúc 19:14

dasdfghjkl

 

Bình luận (0)
H24
Xem chi tiết
DP
24 tháng 6 2021 lúc 8:29

45ubyu

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
NL
17 tháng 9 2021 lúc 15:53

Kẻ đường cao BD ứng với AC. Do góc A tù \(\Rightarrow\) D nằm ngoài đoạn thẳng AC hay \(CD=AD+AC\) và \(\widehat{DAB}=180^0-120^0=60^0\)

Áp dụng định lý Pitago:

\(AB^2=BD^2+AD^2\) \(\Rightarrow BD^2=AB^2-AD^2\)

Trong tam giác vuông ABD:

\(cos\widehat{BAD}=\dfrac{AD}{AB}\Rightarrow\dfrac{AD}{AB}=cos60^0=\dfrac{1}{2}\Rightarrow AD=\dfrac{1}{2}AB\)

\(\Rightarrow BD^2=AB^2-\left(\dfrac{1}{2}AB^2\right)=\dfrac{3}{4}AB^2\)

Pitago tam giác BCD:

\(BC^2=BD^2+CD^2=\dfrac{3}{4}AB^2+\left(AD+AC\right)^2\)

\(=\dfrac{3}{4}AB^2+\left(\dfrac{1}{2}AB+AC\right)^2\)

\(=\dfrac{3}{4}AB^2+\dfrac{1}{4}AB^2+AB.AC+AC^2\)

\(=AB^2+AB.AC+AC^2\)

Hay \(a^2=b^2+c^2+bc\)

Bình luận (0)
NL
17 tháng 9 2021 lúc 15:54

undefined

Bình luận (0)