Cho tam giác ABC nội tiếp đường tròn tâm (O;R). gọi I là điểm bất kì nằm trong tam giác ABC.(I ko thuộc cạnh của tam giác). Các tia AI,BI,CI lần lượt cắt BC,AC,AB tạiM,N,P. chứng minh AI/AM + BI/BN + CI/CP = 2
cho tam giác abc nội tiếp đường tròn (o), I là tâm đường tròn nội tiếp tam giác abc. AI cắt (o) tại M, c/m tam giác MIB cân
Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi I là tâm đường tròn nội tiếp tam giác ABC. AI cắt đường tâm O tại M. E là trung điểm của BC. ME cắt đường tròn tâm O tại N. Chứng minh góc BEI = góc ANI
Cho tam giác ABC nội tiếp với đường tròn (O) , đường phân giác góc B^và C^ cắt đường tròn (O) tại D , E. Dựng đường tròn tâm D tiếp xúc với cạnh AC, đường tròn tâm E tiếp xúc với cạnh AB. Chứng minh rằng tâm của đường tròn nội tiếp tam giác ABC nằm trên tiếp tuyến chung của hai đường tròn (D) và (E).
Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O). Gọi điểm I là tâm đường tròn nội tiếp tam giác ABC, tia AI cắt đường tròn (O) tại điểm M ( khác A)
a) cm các tam giác IMB và tam giác IMC là tam giác cân
b) Đường thẳng MO cắt đường tròn (O) tại điểm N (khác M) và cắt cạnh BC tại P. cm sinˆBAC/2=IP/IN
c) Gọi các diểm D,E làn lượt là hình chiếu của điểm I trên các cạnh AB,AC. Gọi các điểm H,K lần lượt đối xứng với D,E qua điểm I . Biết AB+AC=3BC. CM các điểm B,C,H,K cùng thuộc 1 đường tròn.
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Trên cạnh BC lấy điểm D sao cho ^ABC = ^CAD. (K) là đường tròn nội tiếp tam giác ADC. E là chân đường phân giác xuất phát từ đỉnh B của tam giác ABC. Tia EK cắt đường tròn ngoại tiếp tam giác ABE tại L. CM tâm đường tròn ngoại tiếp tam giác BLC nằm trên (O) ?
Gọi I là tâm nội tiếp \(\Delta\)ABC, khi đó 3 điểm C,I,K thẳng hàng. Gọi đường tròn ngoại tiếp \(\Delta\)AIE cắt tia CI tại điểm thứ hai F.
Xét \(\Delta\)CKA và \(\Delta\)CIB có: ^ACK = ^BCI (=^ACB/2); ^CAK = ^CBI (=^ABC/2) => \(\Delta\)CKA ~ \(\Delta\)CIB (g.g)
Suy ra: \(\frac{CK}{CI}=\frac{CA}{CB}\). Mà \(\frac{CA}{CB}=\frac{CD}{CA}\)(\(\Delta\)CAD ~ \(\Delta\)CBA) nên \(\frac{CK}{CI}=\frac{CD}{CA}\Rightarrow\frac{CK}{CD}=\frac{CI}{CA}\)
Lại có: CEA và CIF là 2 cát tuyến của (AIE) nên \(\frac{CI}{CA}=\frac{CE}{CF}\). Từ đó: \(\frac{CK}{CD}=\frac{CE}{CF}\)
Suy ra: \(\Delta\)CEK ~ \(\Delta\)CFD (c.g.c) => ^CEK = ^CFD. Nếu ta gọi 2 tia FD và EK cắt nhau ở L' thì ^CEL' = ^CFL'
=> Tứ giác CL'FE nội tiếp => ^ECF = ^EL'F => ^KCD = ^KL'D => Tứ giác CKDL' nội tiếp
Áp dụng phương tích đường tròn có: FK.FC=FD.FL' (1)
Cũng từ \(\Delta\)CKA ~ \(\Delta\)CIB (cmt) => ^BIF = ^AKI hay ^AKF = ^EIC => ^AKF = ^CAF
=> \(\Delta\)AFK ~ \(\Delta\)CFA (g.g) => FA2 = FK.FC (2)
Từ (1) và (2) => FA2 = FD.FL' => \(\Delta\)FDA ~ \(\Delta\)FAL' (c.g.c)
=> ^FL'A = ^FAD = ^DAC - ^FAC = ^ABC - ^FKA = ^ABC - (^KAC + ^ACK) = ^ABC/2 - ^ACB/2
Do đó: ^AL'E = ^FL'A + ^FL'E = ^ABC/2 - ^ACB/2 + ^ACB/2 = ^ABC/2 = ^ABE => Tứ giác ABL'E nội tiếp
Hay tia EK cắt đường tròn ngoại tiếp tam giác ABE tại L' => L' trùng L
Từ đó dễ có: ^BLC = ^ABC/2 + ^ACB + ^ABC/2 + ^BAC/2 = ^ABC + ^ACB + ^BAC/2 = 1800 - ^BAC/2
Vậy thì tâm của đường tròn (BLC) nằm tại điểm chính giữa cung BC chứa A của (O) (đpcm).
Cho tam giác ABC , D là điểm trên cạnh BC sao cho đường tròn nội tiếp tam giác ABD và tam giác ADC tiếp xúc nhau tại một điểm thuộc cạnh AD. Gọi I, J lần lượt là tâm đường tròn nội tiếp tam giác ABD và tam giác ADC , O là tâm đường tròn ngoại tiếp tam giác AIJ
a) Xác định vị trí điểm D trên cạnh BC
b) Từ câu a) chứng minh rằng đường phân giác góc BAC qua tâm O
Cho tam giác ABC , D là điểm trên cạnh BC sao cho đường tròn nội tiếp tam giác ABD và tam giác ADC tiếp xúc nhau tại một điểm thuộc cạnh AD. Gọi I, J lần lượt là tâm đường tròn nội tiếp tam giác ABD và tam giác ADC , O là tâm đường tròn ngoại tiếp tam giác AIJ
a) Xác định vị trí điểm D trên cạnh BC
b) Từ câu a) chứng minh rằng đường phân giác góc BAC qua tâm O
Cho tam giác ABC,một đường tròn tâm O nội tiếp tam giác ABC tiếp xúc với BC ở D.Đường tròn tâm I bàn tiếp trong góc A của tam giác ABC.Vẽ đường kính DE.Gọi M,N là tiếp điểm của đường tròn tâm O,I với AB.Chứng minh:
a)OA/IA=OM/IN
b)A,E,F thẳng hàng
cho tam giác ABC nội tiếp trong đường tròn tâm O , BE và CF là hai đường cao , cắt nhau tại H , tứ giác AFHE nội tiếp trong đường tròn tâm I , BECF nội tiếp đường trfonf tâm M , chứng minh ME là tiếp tuyến của đương tròn tâm I
Xét tứ giác AFHE có
\(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)
=>AFHE là tứ giác nội tiếp đường tròn đường kính AH
=>I là trung điểm của AH
=>IA=IH=IE=IF
Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
=>BFEC là tứ giác nội tiếp đường tròn đường kính BC
=>M là trung điểm của BC
=>MB=MC=ME=MF
Gọi O là giao điểm của AH với BC
Xét ΔABC có
BE,CF là đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại O
ΔBHO vuông tại O
=>\(\widehat{OHB}+\widehat{OBH}=90^0\)
mà \(\widehat{OBH}+\widehat{OCE}=90^0\)(ΔBEC vuông tại E)
nên \(\widehat{OHB}=\widehat{OCE}\)
mà \(\widehat{OHB}=\widehat{IHE}\)(hai góc đối đỉnh)
nên \(\widehat{IHE}=\widehat{OCE}\)
IH=IE
=>\(\widehat{IHE}=\widehat{IEH}\)
mà \(\widehat{IHE}=\widehat{OCE}\)
nên \(\widehat{IEH}=\widehat{OCE}=\widehat{ECB}\)
ME=MB
=>ΔMEB cân tại M
=>\(\widehat{MEB}=\widehat{MBE}\)
=>\(\widehat{MEB}=\widehat{EBC}\)
\(\widehat{IEM}=\widehat{IEH}+\widehat{MEH}\)
\(=\widehat{EBC}+\widehat{ECB}\)
\(=90^0\)
=>ME là tiếp tuyến của (I)
Cho tam giác abc có ba góc nhọn nội tiếp đường tròn tâm O kẻ đường thẳng (d) tiếp tuyến với đường tròn tâm O(với C là tiếp điểm ) AH, BK là đường cao của tam giác ABC a) Chứng minh tứ giác AKHB nội tiếp b) Chứng minh KHvuông góc với OC2)từ A,H,B,K lần lượt kẻ các đường thẳng song song với OC cắt đường thẳng (d) theo thứ tự là M,N,E,F:a)chứng minh góc CAH = góc CEK b) chưng minh EF=MN
Lời giải:
a)
Theo tính chất tiếp tuyến thì
Do đó tứ giác nội tiếp.
b) Vì nên (hai góc đồng vị)
Mặt khác theo tính chất hai tiếp tuyến cắt nhau ta dễ thấy là đường phân giác của góc
Do đó:
Từ