Bài 4: Góc tạo bởi tiếp tuyến và dây cung

H24

cho tam giác ABC nội tiếp trong đường tròn tâm O , BE và CF là hai đường cao , cắt nhau tại H , tứ giác AFHE nội tiếp trong đường tròn tâm I , BECF nội tiếp đường trfonf tâm M , chứng minh ME là tiếp tuyến của đương tròn tâm I 

 

NT
26 tháng 11 2023 lúc 19:51

Xét tứ giác AFHE có

\(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)

=>AFHE là tứ giác nội tiếp đường tròn đường kính AH

=>I là trung điểm của AH

=>IA=IH=IE=IF

Xét tứ giác BFEC có

\(\widehat{BFC}=\widehat{BEC}=90^0\)

=>BFEC là tứ giác nội tiếp đường tròn đường kính BC

=>M là trung điểm của BC

=>MB=MC=ME=MF

Gọi O là giao điểm của AH với BC

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại O

ΔBHO vuông tại O

=>\(\widehat{OHB}+\widehat{OBH}=90^0\)

mà \(\widehat{OBH}+\widehat{OCE}=90^0\)(ΔBEC vuông tại E)

nên \(\widehat{OHB}=\widehat{OCE}\)

mà \(\widehat{OHB}=\widehat{IHE}\)(hai góc đối đỉnh)

nên \(\widehat{IHE}=\widehat{OCE}\)

IH=IE

=>\(\widehat{IHE}=\widehat{IEH}\)

mà \(\widehat{IHE}=\widehat{OCE}\)

nên \(\widehat{IEH}=\widehat{OCE}=\widehat{ECB}\)

ME=MB

=>ΔMEB cân tại M

=>\(\widehat{MEB}=\widehat{MBE}\)

=>\(\widehat{MEB}=\widehat{EBC}\)

\(\widehat{IEM}=\widehat{IEH}+\widehat{MEH}\)

\(=\widehat{EBC}+\widehat{ECB}\)

\(=90^0\)

=>ME là tiếp tuyến của (I)

Bình luận (0)

Các câu hỏi tương tự
2N
Xem chi tiết
HN
Xem chi tiết
GN
Xem chi tiết
MV
Xem chi tiết
HN
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
LQ
Xem chi tiết
TL
Xem chi tiết