Chứng minh rằng: \(\frac{a^2}{4}+b^2+c^2>=ab+2bc\)
Cho ba số thực a, b, c. Chứng minh rằng:
\(\frac{a^2}{4}+b^2+c^2\ge ab-ac+2bc\)
cho a, b, c là các số không âm. Chứng minh rằng:
\(\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ca}+\frac{ab}{c^2+2ab}\le1\)
Ta chứng minh bất đẳng thức: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) (a,b,c,x,y,z dương) (Hệ quả của bất đẳng thức Cauchy-Schwarz (Bunyakovsky))
\(\left[\frac{a^2}{\left(\sqrt{x}\right)^2}+\frac{b^2}{\left(\sqrt{y}\right)^2}+\frac{c^2}{\left(\sqrt{z}\right)^2}\right]\left[\left(\sqrt{x}\right)^2+\sqrt{y}^2+\sqrt{z^2}\right]\ge a^2+b^2+c^2\)
\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
Ta có:
\(A=\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
\(2A=\frac{2bc}{a^2+2bc}+\frac{2ca}{b^2+2ac}+\frac{2ab}{c^2+2ab}\)
\(=\frac{a^2+2bc-a^2}{a^2+2bc}+\frac{b^2+2ca-b^2}{b^2+2ac}+\frac{c^2+2ab-c^2}{c^2+2ab}\)
\(=3-\left(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\right)\)
\(\le3-\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2ac+2bc}=3-\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=3-1=2\)
=> A<=1
a,b,c dương
Ta viết lại BĐT thành: \(\frac{1}{\frac{a^2}{bc}+2}+\frac{1}{\frac{b^2}{ca}+2}+\frac{1}{\frac{c^2}{ab}+2}\le1\)
Đặt \(\frac{a^2}{bc}=x;\frac{b^2}{ca}=y;\frac{c^2}{ab}=z\Rightarrow\hept{\begin{cases}x,y,z>0\\xyz=1\end{cases}}\)và ta cần chứng minh \(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\le1\)
Xét biểu thức\(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\) \(\frac{\left(y+2\right)\left(z+2\right)+\left(z+2\right)\left(x+2\right)+\left(x+2\right)\left(y+2\right)}{\left(x+2\right)\left(y+2\right)\left(z+2\right)}\)
\(=\frac{\left(yz+2y+2z+4\right)+\left(zx+2z+2x+4\right)+\left(xy+2x+2y+4\right)}{\left(xy+2x+2y+4\right)\left(z+2\right)}\)
\(=\frac{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}{xyz+2\left(xy+yz+zx\right)+4\left(x+y+z\right)+8}\)\(=\frac{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}{xyz+\left(xy+yz+zx\right)+\left(xy+yz+zx\right)+4\left(x+y+z\right)+8}\)\(\le\frac{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}{xyz+3\sqrt{\left(xyz\right)^2}+\left(xy+yz+zx\right)+4\left(x+y+z\right)+8}\)\(=\frac{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}=1\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = z = 1 hay a = b = c
Ta viết lại BĐT thành: \(\frac{1}{\frac{a^2}{bc}+2}+\frac{1}{\frac{b^2}{ca}+2}+\frac{1}{\frac{c^2}{ab}+2}\le1\)
Đặt \(\frac{a^2}{bc}=x^2;\frac{b^2}{ca}=y^2;\frac{c^2}{ab}=z^2\)thì \(xyz=1\)
Khi đó BĐT chuyển thành dạng:\(\frac{1}{x^2+2}+\frac{1}{y^2+2}+\frac{1}{z^2+2}\le1\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x^2+2}+\frac{1}{2}-\frac{1}{y^2+2}+\frac{1}{2}-\frac{1}{z^2+2}\ge\frac{3}{2}-1=\frac{1}{2}\)
\(\Leftrightarrow\frac{x^2}{x^2+2}+\frac{y^2}{y^2+2}+\frac{z^2}{z^2+2}\ge1\)
Áp dụng BĐT Bunyakovsky dạng phân thức, ta được: \(\frac{x^2}{x^2+2}+\frac{y^2}{y^2+2}+\frac{z^2}{z^2+2}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+6}\)
Đến đây, ta cần chỉ ra rằng \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+6}\ge1\Leftrightarrow xy+yz+zx\ge3\)(Đúng theo BĐT AM - GM vì \(xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}=3\)
Đẳng thức xảy ra khi x = y = z = 1 hay a = b = c
chứng minh \(\frac{a^2}{4}+b^2+c^2\ge ab-ac+2bc\)
Biến đổi tương đương:
\(\dfrac{a^2}{4}+b^2+c^2\ge ab-ac+2bc\) (1)
\(\Leftrightarrow a^2+4b^2+4c^2\ge4ab-4ac+8bc\)
\(\Leftrightarrow a^2+\left(2b\right)^2+\left(2c\right)^2-2.a.2b+2.a.2c-2.2b.2c\ge0\)
\(\Leftrightarrow\left(a-2b+2c\right)^2\ge0\) luôn đúng
=> (1) đúng
Dấu "=" xảy ra khi a = 2(b - c)
Chứng minh bất đẳng thức:
\(\frac{a^2}{4}+b^2+c^2>=ab-ac+2bc\)
\(\frac{a^2}{4}+b^2+c^2\ge ab-ac+2bc\Leftrightarrow a^2+4b^2+4c^2-4ab-4ac+8bc\ge0\)
\(\Leftrightarrow\left(a-2b-2c\right)^2\ge0\)(Hiển nhiên đúng)
Do trên đây tất cả đều là BĐT tương đương nên \(\frac{a^2}{4}+b^2+c^2\ge ab-ac+2bc\)
Đẳng thức xảy ra <=> a - 2b - 2c = 0
Vậy BĐT đã cho là đúng.
Cho ba số a , b , c thỏa mãn \(c^2+2\left(ab-bc-ac\right)=0;b\ne c\)và \(a+b\ne c\)
Chứng minh rằng : \(\frac{2a^2-2a+c^2}{2b^2-2bc+b^2}=\frac{a-c}{b-c}\)
Cho ba số thực a,b,c.Chứng minh rằng:
\(\frac{a^2}{4}+b^2+c^2\ge ab-ac+2bc\)
Giúp mình vớiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
\(\frac{a^2}{4}+b^2+c^2=\left(\frac{a}{2}\right)^2+b^2+c^2-ab+ac-2bc+\left(ab-ac+2bc\right)=\left(\frac{a}{2}-b+c\right)^2+\left(ab-ac+2bc\right)\ge ab-ac+2bc\)
chứng minh rằng:
a) a2+2b2+c2>=2ab-2bc
b) a2+b2+cc>=ab+bc+ca
c) a4+b4+c4>=abc(a+b+c)
Cho a, b, c là ba số thực dương thỏa mãn abc = 1. Chứng minh rằng: \(\frac{a^2}{\left(ab+2\right)\left(2ab+1\right)}+\frac{b^2}{\left(bc+2\right)\left(2bc+1\right)}+\frac{c^2}{\left(ac+2\right)\left(2ac+1\right)}\ge\frac{1}{3}\)\(\frac{1}{3}\)
cho ba số thực a,b,c không âm thỏa mãn không có đồng thời hai số nào dồng thời bằng 0 và \(a^2+b^2+c^2=2\left(ab+bc+ca\right)\)
Chứng minh rằng : \(\sqrt{\frac{2ab}{a^2+b^2}}+\sqrt{\frac{2bc}{b^2+c^2}}+\sqrt{\frac{2ca}{c^2+a^2}}\ge1\)