Những câu hỏi liên quan
H24
Xem chi tiết
NN
3 tháng 9 2023 lúc 9:42

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

Bình luận (0)
NN
3 tháng 9 2023 lúc 9:43

nhầm

 

Bình luận (0)
HT
Xem chi tiết
AZ
22 tháng 1 2020 lúc 10:28

Ta viết lại phương trình thành:

\(\left(2x-1\right)^3-\left(x^2-x-1\right)=\left(x+1\right)\sqrt[3]{\left(x+1\right)\left(2x-1\right)+x^2-x-1}\)

Đặt: \(a=2x-1;b=\sqrt[3]{\left(x+1\right)\left(2x-1\right)+x^2-x-1}=\sqrt[3]{3x^2-2}\) ta thu được hệ phương trình:

\(\hept{\begin{cases}a^3-\left(x^2-x+1\right)=\left(x+1\right)b\\b^3-\left(x^2-x+1\right)=\left(x+1\right)a\end{cases}}\) 

Trừ 2 pt của hệ cho nhau ta được: \(\left(a-b\right)\left(a^2+ab+b^2+x+1\right)=0\)

Trường hợp 1: \(a=b\) ta có:

\(2x-1=\sqrt[3]{3x^2-2}\Leftrightarrow8x^3-15x^2+6x+1=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{8}\end{cases}}\)

Trường hợp 2: \(a^2+ab+b^2+x+1=0\Leftrightarrow\left(a+\frac{b}{2}\right)^2+\frac{3}{4}\left(2x-1\right)^2+x+1=0\)

\(\Leftrightarrow4\left(a+\frac{b}{2}\right)^2+4x^2+2\left(2x-1\right)^2+5=0\left(vn\right)\)

Vậy pt có 2 nghiệm là: \(x=1;x=-\frac{1}{8}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
22 tháng 1 2020 lúc 16:17

sai r bạn ak

Bình luận (0)
 Khách vãng lai đã xóa
AZ
22 tháng 1 2020 lúc 16:18

Chỗ nào z bn?

Bình luận (0)
 Khách vãng lai đã xóa
MT
Xem chi tiết
VC
Xem chi tiết
H24
15 tháng 8 2017 lúc 19:56

đặt \(\sqrt{3x+1}=a\) 

=> pt <=> 4x^2 +a +6=a^2 +12x

chuyển hết nt sang vế phải để vt =0 ptđttnt có ntc=a+2x-3

câu 2 đặt \(\sqrt[3]{3x-5}=2y-3\) rồi làm tt như bài trên lớp

Bình luận (0)
H24
15 tháng 8 2017 lúc 20:23

sau khi chuyển  cậu có pt a62-4x^2-a+12x-6=0

=> a^2+2ax-3a-2ax-4x^2+6x+2a+4x-6=0

<=> (a+2x-3)(a-2x+2)=0

Bình luận (0)
H24
15 tháng 8 2017 lúc 21:11

c2 đăt...

=>3x-5=(2y-3)^3 

mặt khác từ pt =>\(\sqrt[3]{3x-5}=\left(2x-3\right)^3-x+2\)

=>2y-3=(2x-3)^3-x+2

=>2y+x-5=(2x-3)^3 rồi cậu giải tt bài trên lớp

Bình luận (0)
TN
Xem chi tiết
H24
19 tháng 5 2018 lúc 20:15

Đặt:

\(a=\sqrt[3]{x^2-x-8};b=\sqrt[3]{x^2-8x-1}\)

Để ý thấy rằng: \(a^3-b^3=7x-7=\left(7x+1\right)+8\)nên PT trở thành:

\(b-a+\sqrt[3]{a^3-b^3+8}=2\)

\(\Leftrightarrow a^3-b^3+8=\left(2+a-b\right)^3\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab\right)=\left(a-b\right)^3+6\left(a-b\right)\left[2+\left(a-b\right)\right]\)

\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\\left(a-b\right)^2+3ab=\left(a-b\right)^2+12+6\left(a-b\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\\left(a+2\right)\left(2-b\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\a=-2\\b=2\end{cases}}\)

\(\left(+\right)a=b\Leftrightarrow x^2-x-8=x^2-8x-1\Leftrightarrow x=1\)

\(\left(+\right)a=-2\Leftrightarrow x^2-x-8=-8\Leftrightarrow\orbr{\begin{cases}a=0\\x=1\end{cases}}\)

\(\left(+\right)b=2\Leftrightarrow x^2-8x-1=8\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)

\(\Rightarrow x\in\left\{\pm1;0;9\right\}\)

Bình luận (0)
BB
Xem chi tiết
VC
Xem chi tiết
DL
29 tháng 10 2017 lúc 14:22

)2+3(x+1)2{7x2−22x+28=(2x−1)2+3(x−3)27x2+8x+13=(2x−1)2+3(x+2)231x2+14x+4=7(2x−1)2+3(x+1)2


Do đó: 

VT≥3–√|3−x|+3–√|x+2|+3–√|x+1|≥3–√(3−x)+3–√(x+2)+3–√(x+1)=33–√(x+2)VT≥3|3−x|+3|x+2|+3|x+1|≥3(3−x)+3(x+2)+3(x+1)=33(x+2)

Bình luận (0)
TS
20 tháng 8 2020 lúc 8:26

to gefhfhdgtggg

GGGGGG

GGGGG

G

G

G

G

G

G

G

G

G

G

GG

GG

G

G

G

G

G

GG

G

GGG

G

G

G

G

G

G

G

G

G

G

GG

G

G

G

G

G

G

G

GG

G

GG

G

G

G

G

G

G

G

G

G

G

G

G

G

GG

GG

G

G

G

GG

GGGGG

G

G

G

G

G

G

G

GGGGG

G

G

GG

GG

GG

G

G

G

GGG

G

G

GG

G

GGG

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

GG

GG

G

G

GG

F

E

RE

R

ER

\\\\\\]

YYYYYYYYY

CMMCMMCMMCMMCMMMCMCMMCMCMCMC

N

G

U

V

L

AHIHI

Bình luận (0)
 Khách vãng lai đã xóa
TL
20 tháng 8 2020 lúc 8:42

Ta có \(\sqrt{7x^2-22x+28}=\sqrt{\left(2x+1\right)^2+3\left(3-x\right)^2}\ge\sqrt{3}\left(3-x\right)\)

\(\sqrt{7x^2+8x+13}=\sqrt{\left(2x-1\right)^2+3\left(x+2\right)^2}\ge\sqrt{3}\left(x+2\right)\)

\(\sqrt{31x^2+14x+4}=\sqrt{\left(2x-1\right)^2+3\left(3x+1\right)^2}\ge\sqrt{3}\left(3x+1\right)\)

Cộng các Bất Đẳng Thức trên ta được

\(\sqrt{7x^2-22x+28}+\sqrt{7x^2+8x+13}+\sqrt{31x^2+14x+4}\ge3\sqrt{3}\left(x+2\right)\)

Do đó phương trình tương đương với dấu đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{matrix}2x-1=0\\3-x\ge0\\x+2\ge0\\3x+1\ge0\end{matrix}\Leftrightarrow x=\frac{1}{2}}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
TH
20 tháng 11 2017 lúc 14:21

3x2&#x2212;7x+3&#x2212;3x2&#x2212;5x&#x2212;1=x2&#x2212;2&#x2212;x2&#x2212;3x+4" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
&#x21D4;&#x2212;2x+43x2&#x2212;7x+3+3x2&#x2212;5x&#x2212;1=3x&#x2212;6x2&#x2212;2+x2&#x2212;3x+4" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

&#x21D4;(x&#x2212;2)(3x2&#x2212;2+x2&#x2212;3x+4+23x2&#x2212;7x+3+3x2&#x2212;5x&#x2212;1)=0" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là . Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:

3x&#x2212;183x&#x2212;2+4+x&#x2212;67&#x2212;x&#x2212;1+(x&#x2212;6)(3x2+x&#x2212;2)" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">=0

&#x21D4;(x&#x2212;6)(33x&#x2212;2+4+17&#x2212;x&#x2212;1+3x2+x&#x2212;2)" role="presentation" style="border:0px; direction:ltr; display:inline-table; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">=0

&#x21D4;x=6" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

23&#x2264;x&#x2264;7" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

(33x&#x2212;2+4+17&#x2212;x&#x2212;1+3x2+x&#x2212;2)" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

Bình luận (0)
HH
Xem chi tiết