Những câu hỏi liên quan
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
HH
Xem chi tiết
HH
Xem chi tiết
PT
5 tháng 7 2019 lúc 9:57

ta có : x2=6 \(\Rightarrow\)\(x=\sqrt{6}\)

mà \(\sqrt{6}\)là số vô tỉ nên không tồn tại số hữu tỉ x thỏa mãn x2=6 (đpcm)

chúc bạn học tốt

Bình luận (0)
H24
5 tháng 7 2019 lúc 9:57

#)Giải :

Giả sử có tồn tại số hữu tỉ \(x=\frac{a}{b}\left(a,b\in N;ƯCLN\left(a,b\right)=1;b\ne0\right)\)có bình phương bằng 6

Ta có : \(x^2=\left(\frac{a}{b}\right)^2=6\)

\(\Rightarrow a^2=6b^2\)

\(\Rightarrow a^2⋮6^2\Rightarrow6b^2⋮6^2\Rightarrow b^2⋮6\)

Vì a và b cùng chia hết cho 6 \(\RightarrowƯCLN\left(a,b\right)\ge6\)(không thể xảy ra vì ƯCLN(a,b) = 1)

Vậy không tồn tại số hữu tỉ x thỏa mãn x2 = 6

=> đpcm

Bình luận (0)
KN
5 tháng 7 2019 lúc 10:04

\(x^2=6\Leftrightarrow x=\sqrt{6}\)

Giả sử \(\sqrt{6}\)là số hữu tỉ, như vậy \(\sqrt{6}\)có thể viết được dưới dạng :

                \(\sqrt{6}=\frac{m}{n}\)với \(m,n\inℤ\),\(\left(m,n\right)=1\)

Suy ra \(m^2=6n^2\)(1), do đó \(m^2⋮3\). Ta lại có 3 là số nguyên tố nên \(m⋮3\)(2)

Đặt m = 3k \(\left(k\inℕ\right)\).Thay vào (1) ta được \(9k^2=6n^2\)nên \(3k^2=2n^2\)

suy ra \(5n^2⋮3\)

Do (5, 3) = 1 nên \(n^2⋮3\), do đó \(n⋮3\left(3\right)\)

Từ (2) và (3) suy ra m và n cùng chia hết cho 3, trái với \(\left(m,n\right)=1\)

Như vậy \(\sqrt{6}\)không là số hữu tỉ, do đó \(\sqrt{6}\)là số vô tỉ.

Vậy x là số vô tỉ hay không tồn tại số hữu tỉ x thỏa mãn đề bài (đpcm)

Bình luận (0)
BB
Xem chi tiết
NM
10 tháng 10 2021 lúc 15:37

Giả sử \(x+\sqrt{2}\) hữu tỉ thì \(x=-\sqrt{2}\) do \(\sqrt{2}\) vô tỉ

Do đó \(x\) vô tỉ

Vậy \(x^3+\sqrt{2}\) vô tỉ

Vậy ko tồn tại số thực x tm đề

Hmm cái này ko chắc :))

 

Bình luận (0)
NC
Xem chi tiết
AH
16 tháng 10 2021 lúc 19:18

Lời giải:
$x^3+y^3+z^3=x+y+z+2020$

$\Leftrightarrow x(x^2-1)+y(y^2-1)+z(z^2-1)=2020$

$\Leftrightarrow x(x-1)(x+1)+y(y-1)(y+1)+z(z-1)(z+1)=2020$
Vì $x,x-1,x+1$ là 3 số nguyên liên tiếp nên $x(x-1)(x+1)\vdots 6$

Tương tự: $y(y-1)(y+1), z(z-1)(z+1)\vdots 6$

$\Rightarrow x(x-1)(x+1)+y(y-1)(y+1)+z(z-1)(z+1)\vdots 6$

Mà $2020\not\vdots 6$ nên không tồn tại 3 số nguyên $x,y,z$ thỏa mãn đk đã cho.

Bình luận (0)
VO
Xem chi tiết
TT
28 tháng 6 2015 lúc 17:46

a, không tồn tại chắc vậy

Bình luận (0)
YY
28 tháng 6 2015 lúc 20:10

a thì chắc không tồn tại rồi     

Còn b thì không biết

Bình luận (0)
NH
14 tháng 8 2016 lúc 10:31

a ko tồn tại

b cũng Zậy

Bình luận (0)
BB
Xem chi tiết