\(\left(x+1\right)^4+\left(x+5\right)^4=40\)
Giải các phương trình sau
1. \(\left(x-1\right)\left(x+5\right)\left(x^2+4x+8\right)+40=0\)
2. \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-15=0\)
Giải phương trình sau
\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)
\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\\ \Leftrightarrow\left(x+1\right)\left(x+5\right)\left(x+2\right)\left(x+4\right)=40\\ \Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=40\)
Đặt \(x^2+6x+5=t\)
\(\Rightarrow t\left(t+3\right)=40\\ \Rightarrow t^2+3t=40\\ \Rightarrow t^2+2.t.\dfrac{3}{2}+\dfrac{9}{4}=\dfrac{169}{4}\\ \Rightarrow\left(t+\dfrac{3}{2}\right)^2=\left(\dfrac{13}{2}\right)^2\\ \Leftrightarrow\left(t+\dfrac{3}{2}\right)^2-\left(\dfrac{13}{2}\right)^2=0\\ \Leftrightarrow\left(t+\dfrac{3}{2}-\dfrac{13}{2}\right)\left(t+\dfrac{3}{2}+\dfrac{13}{2}\right)=0\\ \Leftrightarrow\left(t-5\right)\left(t+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=5\\t=-8\end{matrix}\right.\)
TH1: t=5
\(\Rightarrow x^2+6x+5=5\\ \Rightarrow x\left(x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
TH2 : t=-8
\(\Rightarrow x^2+6x+5=-8\\ \Rightarrow\left(x+3\right)^2=-4\left(voly\right)\)
=> x rông
Vậy x=0 hoặc x=-6
\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)
\(\Rightarrow\left(x+1\right)\left(x+5\right)\left(x+2\right)\left(x+4\right)-40=0\)
\(\Rightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)-40=0\)
Đặt \(a=x^2+6x+5\)
\(\Rightarrow a\left(a+3\right)-40=0\)
\(\Rightarrow a^2+3a-40=0\)
\(\Rightarrow a^2+8a-5a-40=0\)
\(\Rightarrow a\left(a+8\right)-5\left(a+8\right)=0\)
\(\Rightarrow\left(a+8\right)\left(a-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a+8=0\\a-5=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}a=-8\\a=5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+6x+5+8=0\\x^2+6x+5-5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+6x+13=0\\x^2+6x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+6x+13\ne0\\x\left(x+6\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
Kết luận:\(S=\left\{-6;0\right\}\)
Giải phương trình: \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)
<=>(x+1)*(x+2)*(x+4)*(x+5)-40=0
<=>x^4+12*x^3+49*x^2+78*x=0
<=>x*(x+6)*(x^2+6*x+13)=0
suy ra
x=0
x=-6
x^2+6*x+13=0(mà phương trình này không thể phân tích nếu phân tích thì sẽ liên quan tới số vô tỉ lên lớp 9 mới học)
Vậy tập nghiệm của phương trình S=-6;0
Nhớ tich nha bạn
Tim x, biet:
a, \(\dfrac{x+1}{5}+\dfrac{x+1}{6}=\dfrac{x+1}{7}+\dfrac{x+1}{8}\)
b, \(\dfrac{x-1}{2009}+\dfrac{x-2}{2008}=\dfrac{x-3}{2007}+\dfrac{x-4}{2006}\)
c, \(\dfrac{3}{\left(x+2\right)\left(x+5\right)}+\dfrac{5}{\left(x+5\right)\left(x+10\right)}+\dfrac{7}{\left(x+10\right)\left(x+17\right)}\)\(=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
d, \(\dfrac{2}{\left(x-1\right)\left(x-3\right)}+\dfrac{5}{\left(x-3\right)\left(x-8\right)}+\dfrac{12}{\left(x-8\right)\left(x-20\right)}-\dfrac{1}{x-20}=\dfrac{-3}{4}\)
Help me!!!!!!!!!!
Can gap lam. Ai lam duoc cau no thi lam nha. Cam on nhieu truoc!!!!!!!!!!!!
a: \(\dfrac{x+1}{5}+\dfrac{x+1}{6}=\dfrac{x+1}{7}+\dfrac{x+1}{8}\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}-\dfrac{1}{8}\right)=0\)
=>x+1=0
hay x=-1
b: \(\Leftrightarrow\left(\dfrac{x-1}{2009}-1\right)+\left(\dfrac{x-2}{2008}-1\right)=\left(\dfrac{x-3}{2007}-1\right)+\left(\dfrac{x-4}{2006}-1\right)\)
=>x-2010=0
hay x=2010
c: \(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\dfrac{x}{\left(x+2\right)\left(x+17\right)}=\dfrac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}\)
=>x=15
giải hộ mk bài này nha????
giải phương trình :
1)\(5\left(\frac{x^2-4}{x^2-1}\right)-\left(\frac{x+2}{x-1}\right)^2-\left(\frac{x-2}{x+1}\right)^2=0\)
2)\(x^2+\left(\frac{x}{x-1}\right)^2=8\)
3)\(x^2+\left(\frac{81x^2}{\left(x+9\right)^2}\right)=40\)
4)\(\frac{\left(x-1\right)^2}{x^2}+\frac{\left(x-1\right)^2}{\left(x-2\right)^2}=\frac{40}{49}\)
5)\(\left(\frac{x}{x+1}\right)^2+\left(\frac{x}{x-1}\right)^2=90\)
giúp nha!!!!
Tính A = \(\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+5\right)}+\frac{8}{\left(x+5\right)\left(x+6\right)}\)
A= \(\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{2}{x+3}-...+\frac{8}{x+5}-\frac{8}{x+6}\)
A=\(\frac{1}{x+1}+\frac{1}{x+3}+\frac{2}{x+4}+\frac{4}{x+5}-\frac{8}{x+6}\)
Rồi tiếp tục làm nhé bạn.
giải phương trình
1)\(2\left(x-3\right)+1=2\left(x+1\right)-9\)
2)\(\dfrac{5-x}{2}=\dfrac{3x-4}{6}\)
3) \(\left(x-1\right)^2+\left(x+2\right)\left(x-2\right)=\left(2x+1\right)\left(x-3\right)\)
4)\(\left(x+5\right)\left(x-1\right)-\left(x+1\right)\left(x+2\right)=1\)
5) \(\dfrac{6x-1}{15}-\dfrac{x}{5}=\dfrac{2x}{3}\)
6)\(\dfrac{5\left(x-2\right)}{2}-\dfrac{x+5}{3}=1-\dfrac{4\left(x-3\right)}{5}\)
\(1,2\left(x-3\right)+1=2\left(x+1\right)-9\\ \Rightarrow2x-6+1=2x+2-9\\ \Rightarrow2x-5=2x-7\\ \Rightarrow-2=0\left(vô.lí\right)\)
\(2,\dfrac{5-x}{2}=\dfrac{3x-4}{6}\\ \Rightarrow30-6x=6x-8\\ \Rightarrow12x=38\\ \Rightarrow x=\dfrac{19}{6}\)
\(3,\left(x-1\right)^2+\left(x+2\right)\left(x-2\right)=\left(2x+1\right)\left(x-3\right)\\ \Rightarrow x^2-2x+1+x^2-4=2x^2-6x+x-3\\ \Rightarrow2x^2-2x-3=2x^2-5x-3\\ \Rightarrow3x=0\\ \Rightarrow x=0\)
\(4,\left(x+5\right)\left(x-1\right)-\left(x+1\right)\left(x+2\right)=1\\ \Rightarrow x^2+5x-x-5-x^2-2x-x-2=1\\ \\ \Rightarrow x-7=1\\ \Rightarrow x=8\)
\(5,\dfrac{6x-1}{15}-\dfrac{x}{5}=\dfrac{2x}{3}\\ \Rightarrow\dfrac{6x-1}{15}-\dfrac{3x}{15}=\dfrac{10x}{15}\\ \Rightarrow6x-1-3x=10x\\ \Rightarrow3x-1=10x\\ \Rightarrow7x=-1\\ \Rightarrow x=\dfrac{-1}{7}\)
\(6,\dfrac{5\left(x-2\right)}{2}-\dfrac{x+5}{3}=1-\dfrac{4\left(x-3\right)}{5}\\ \Rightarrow\dfrac{75\left(x-2\right)}{30}-\dfrac{10\left(x+5\right)}{30}=\dfrac{30}{30}-\dfrac{24\left(x-3\right)}{30}\\ \Rightarrow75\left(x-2\right)-10\left(x+5\right)=30-24\left(x-3\right)\\ \Rightarrow75x-150-10x-50=30-24x+72\\ \Rightarrow65x-200=102-24x\\ \Rightarrow89x=302\\ \Rightarrow x=\dfrac{320}{89}\)
giải pt \(\left(x-1\right)^4+\left(x+3\right)^4=40\)
Đặt \(x+1=t\)
PT\(\Leftrightarrow\left(t-2\right)^4+\left(t+2\right)^4=40\)
\(\Leftrightarrow\left[\left(t-2\right)^2\right]^2+\left[\left(t+2\right)^2\right]^2=40\)
\(\Leftrightarrow\left[\left(t-2\right)^2+\left(t+2\right)^2\right]^2-2\left(t-2\right)^2\left(t-2\right)^2=40\)
\(\Leftrightarrow\left(t^2-4t+4+t^2+4t+4\right)^2-2\left(t^2-4\right)^2=40\)
\(\Leftrightarrow\left(2t^2+8\right)^2-2\left(t^2-4\right)^2=40\)
\(\Leftrightarrow...\)
a) \(^{ }\left(7x+4\right)^2-\left(7x-4\right)\left(7x+4\right)\)
b) \(^{ }8\left(x-2\right)-3\left(x^2-4x-5\right)-5x^2\)
c) \(^{^{ }}\left(x+1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(x+1\right)\)
a: Ta có: \(\left(7x+4\right)^2-\left(7x-4\right)\left(7x+4\right)\)
\(=\left(7x+4\right)\left(7x+4-7x+4\right)\)
\(=8\left(7x+4\right)\)
=56x+32
b: Ta có: \(8\left(x-2\right)^2-3\left(x^2-4x-5\right)-5x^2\)
\(=8x^2-32x+32-3x^2+12x+15-5x^2\)
\(=-20x+47\)
c: Ta có: \(\left(x+1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(x+1\right)\)
\(=x^3+3x^2+3x+1-x^3+1-3x^2-3x\)
=2