a,b,c la cac so thuc duong thoa man \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\)
Max P=abc
cho a, b, c la cac so thuc duong thoa man a + b + c =abc chung minh rang :
\(\frac{1}{a^2\left(1+bc\right)}+\frac{1}{b^2\left(1+ac\right)}+\frac{1}{c^2\left(1+ab\right)}\le\frac{1}{4}\)
\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)
\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)
\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)
\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)
\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)
Cho a,b,c la cac so duong thoa man a+b+c=9.Tim gia tri nho nhat cua bieu thuc:
\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)
Ta có:\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9}{a^2+b^2+c^2}\)(bđt cauchy-schwarz)
\(P\ge\frac{a^2+b^2+c^2}{81}+\frac{9}{a^2+b^2+c^2}+\frac{80\left(a^2+b^2+c^2\right)}{81}\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\left(a^2+b^2+c^2\right)}{81}\left(AM-GM\right)\)
Sử dụng đánh giá quen thuộc:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=27\)
\(\Rightarrow P\ge\frac{2}{3}+\frac{80\cdot27}{81}=\frac{82}{3}\)
"="<=>a=b=c=3
Cho a,b,c la cac so nguyen duong thoa man: abc=1. CMR
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
bài này chứng minh bài toán phụ, khá là phức tạp, trình bày ra chắc chết quá
bài này mình thấy tren mạng đăng lên đó, có kết quả nhưng ko copy được
Bài này bạn xem lại trong chtt ấy! Mình giải bài này rồi, giải bằng miệng cho nhanh.
1. Cho a,b,c,d la cac so nguyen thoa man \(a^2=b^2+c^2+d^2\)
chung minh rang a.b.c.d + 2015 viet duoc duoi dang hieu cua 2 so chinh phuong.
2. Cho a,b la cac so duong thoa man dieu kien a+b=1. tim gia tri nho nhat cua bieu thuc
\(P=\frac{2+a}{\sqrt{2-a}}+\frac{2+b}{\sqrt{2-b}}\)
Choa,b,c la cac so duong thoa man dieu kien \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Cmr \(\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\ge\frac{a+b+c}{4}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)
\(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ca}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)
Cô si:
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+b}{8}\ge3\sqrt[3]{\frac{a^3}{\left(a+b\right)\left(b+c\right)}.\frac{\left(a+b\right)}{8}.\frac{\left(b+c\right)}{8}}=\frac{3a}{4}\)
Tương tự với 2 cục còn lại, công theo vế:
\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\frac{a+b+c}{4}\text{ }\left(dpcm\right)\)
Cho a,b,c la cac so duong thoa man dieu kien \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Cmr \(\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\ge\frac{a+b+c}{4}\)
Cho a,b,c la cac so duong thoa man dieu kien \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Cmr \(\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\ge\frac{a+b+c}{4}\)
cho a, b, c la cac so duong thoa man a\(a^2+b^2+c^2=3\) . Chung minh rang : \(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}>=3\)
???? là sao vừa lớn vừa bằng đó
duyệt đi
cho a,b la cac so duong thoa man : a+b=1
Tim gia tri nho nhat cua bieu thuc: T= \(\frac{19}{ab}+\frac{6}{a^2+b^2}+2011\left(a^4+b^4\right)\)
\(T_{min}=\frac{2715}{8}\) tại \(a=b=\frac{1}{2}\)
\(T=\frac{19}{ab}+\frac{6}{a^2+b^2}+2011\left(a^4+b^4\right)\)
\(=\frac{19}{ab}+\frac{6}{a^2+b^2}+304\left(a^4+b^4+\frac{1}{16}+\frac{1}{16}\right)+48\left(a^4+\frac{1}{16}\right)+48\left(b^4+\frac{1}{16}\right)+1659\left(a^4+b^4\right)-44\)
\(\ge\frac{19}{ab}+\frac{6}{a^2+b^2}+304ab+24\left(a^2+b^2\right)+1659.\frac{\left(\frac{\left(a+b\right)^2}{2}\right)^2}{2}-44\)
\(=\left(\frac{19}{ab}+304ab\right)+\left(\frac{6}{a^2+b^2}+24\left(a^2+b^2\right)\right)+\frac{1307}{8}\)
\(\ge152+24+\frac{1307}{8}=\frac{2715}{8}\)