LA

a,b,c la cac so thuc duong thoa man \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\) 

Max P=abc

NC
13 tháng 12 2019 lúc 13:57

Ta có:

 \(\frac{1}{1+a}=2-\frac{1}{1+b}-\frac{1}{1+c}=\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)\ge\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)

Tương tự:

\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\)

\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\)

=> \(\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

=> \(abc\le\frac{1}{8}\)

"=" xảy ra <=> a = b = c = 1/2

Vậy max P = abc = 1/8 đạt tại a = b = c =1/2

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NH
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
PB
Xem chi tiết
FM
Xem chi tiết
PD
Xem chi tiết
TD
Xem chi tiết
no
Xem chi tiết