Những câu hỏi liên quan
BT
Xem chi tiết
BT
Xem chi tiết
XG
Xem chi tiết
LQ
Xem chi tiết
NN
Xem chi tiết
NC
5 tháng 9 2021 lúc 20:33

a, (sinx + cosx)(1 - sinx . cosx) = (cosx - sinx)(cosx + sinx)

⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx-sinx=1-sinx.cosx\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx+sinx.cosx-1-sinx=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\\left(cosx-1\right)\left(sinx+1\right)=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=0\\cosx=1\\sinx=-1\end{matrix}\right.\)

b, (sinx + cosx)(1 - sinx . cosx) = 2sin2x + sinx + cosx

⇔ (sinx + cosx)(1 - sinx.cosx - 1) = 2sin2x

⇔ (sinx + cosx).(- sinx . cosx) = 2sin2x

⇔ 4sin2x + (sinx + cosx) . sin2x = 0

⇔ \(\left[{}\begin{matrix}sin2x=0\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+4=0\end{matrix}\right.\)

⇔ sin2x = 0

c, 2cos3x = sin3x

⇔ 2cos3x = 3sinx - 4sin3x

⇔ 4sin3x + 2cos3x - 3sinx(sin2x + cos2x) = 0

⇔ sin3x + 2cos3x - 3sinx.cos2x = 0

Xét cosx = 0 : thay vào phương trình ta được sinx = 0. Không có cung x nào có cả cos và sin = 0 nên cosx = 0 không thỏa mãn phương trình

Xét cosx ≠ 0 chia cả 2 vế cho cos3x ta được : 

tan3x + 2 - 3tanx = 0

⇔ \(\left[{}\begin{matrix}tanx=1\\tanx=-2\end{matrix}\right.\)

d, cos2x - \(\sqrt{3}sin2x\) = 1 + sin2x

⇔ cos2x - sin2x - \(\sqrt{3}sin2x\) = 1

⇔ cos2x - \(\sqrt{3}sin2x\) = 1

⇔ \(2cos\left(2x+\dfrac{\pi}{3}\right)=1\)

⇔ \(cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}=cos\dfrac{\pi}{3}\)

e, cos3x + sin3x = 2cos5x + 2sin5x

⇔ cos3x (1 - 2cos2x) + sin3x (1 - 2sin2x) = 0

⇔ cos3x . (- cos2x) + sin3x . cos2x = 0

⇔ \(\left[{}\begin{matrix}sin^3x=cos^3x\\cos2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=cosx\\cos2x=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\cos2x=0\end{matrix}\right.\)

Bình luận (0)
SK
Xem chi tiết
PL
3 tháng 4 2017 lúc 23:07

a) cosx - √3sinx = √2 ⇔ cosx - tansinx = √2

⇔ coscosx - sinsinx = √2cos ⇔ cos(x + ) =

Bình luận (0)
PL
3 tháng 4 2017 lúc 23:09

b) 3sin3x - 4cos3x = 5 ⇔ sin3x - cos3x = 1.

Đặt α = arccos thì phương trình trở thành

cosαsin3x - sinαcos3x = 1 ⇔ sin(3x - α) = 1 ⇔ 3x - α = + k2π

⇔ x = , k ∈ Z (trong đó α = arccos).



Bình luận (0)
PL
3 tháng 4 2017 lúc 23:09

c) Ta có sinx + cosx = √2cos(x - ) nên phương trình tương đương với

2√2cos(x - ) - √2 = 0 ⇔ cos(x - ) =

d) 5cos2x + 12sin2x -13 = 0 ⇔

Đặt α = arccos thì phương trình trở thành

cosαcos2x + sinαsin2x = 1 ⇔ cos(2x - α) = 1

⇔ x = + kπ, k ∈ Z (trong đó α = arccos).


Bình luận (0)
TV
Xem chi tiết
XG
Xem chi tiết
MH
Xem chi tiết