Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TM
Xem chi tiết
TH
10 tháng 1 2021 lúc 11:59

Rõ ràng đa thức \(x^3-1\) chia hết cho đa thức \(x^2+x+1\).

Ta tách: \(x^9+x^6+x^3+1=\left(x^9-1\right)+\left(x^6-1\right)+\left(x^3-1\right)+4=\left(x^3-1\right)\left(x^6+x^3+1\right)+\left(x^3-1\right)\left(x^3+1\right)+\left(x^3-1\right)+4\).

Từ đây suy ra đa thức đó chia cho đa thức \(x^2+x+1\) được đa thức dư là 4.

Bình luận (0)
H24
10 tháng 1 2021 lúc 11:44

Không chia có mà làm=niềm tin ah

 

Bình luận (0)
DD
Xem chi tiết
NL
17 tháng 4 2022 lúc 14:18

\(f\left(x\right)=x^3-x+7\)

\(g\left(x\right)=-x^3+8x-14\)

\(\Rightarrow f\left(x\right)+g\left(x\right)=7x-7\)

Nghiệm của đa thức \(f\left(x\right)+g\left(x\right)=0\Rightarrow7x-7=0\)

\(\Rightarrow x=1\)

Bình luận (0)
AW
Xem chi tiết
RV
Xem chi tiết
H24
Xem chi tiết
NT
1 tháng 9 2021 lúc 21:03

d: Ta có: f(x):g(x)

\(=\dfrac{x^3-2x^2+3x+5}{x+1}\)

\(=\dfrac{x^3+x^2-3x^2-3x+6x+6-1}{x+1}\)

\(=x^2-3x+6+\dfrac{-1}{x+1}\)

Để f(x) chia hết cho g(x) thì \(x+1\in\left\{1;-1\right\}\)

hay \(x\in\left\{0;-2\right\}\)

 

Bình luận (0)
AA
Xem chi tiết
AP
1 tháng 5 2021 lúc 7:33

quá đơn giản

Bình luận (0)
 Khách vãng lai đã xóa
AA
13 tháng 5 2021 lúc 21:32

đơn giản thì trả lời đi , fly color à bạn :))) 

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
NM
11 tháng 12 2021 lúc 8:06

\(a,f\left(x\right):g\left(x\right)=\left[\left(x-5\right)\left(x^3+2\right)\right]:\left(x-5\right)=x^3+2\\ \Rightarrow\text{Dư }0\\ b,f\left(x\right):g\left(x\right)=\left(8x^2-4x-2x+1+4\right):\left(2x-1\right)\\ =\left[4x\left(2x-1\right)-\left(2x-1\right)+4\right]:\left(2x-1\right)\\ =4x-1\left(\text{dư }4\right)\)

Bình luận (0)
TL
Xem chi tiết
NT
3 tháng 12 2021 lúc 14:31

b: \(=\dfrac{8x^2-4x-2x+1+4}{2x-1}=4x-1+\dfrac{4}{2x-1}\)

Bình luận (0)
H24
Xem chi tiết
TC
26 tháng 8 2021 lúc 19:50

undefined

Bình luận (0)
H24
26 tháng 8 2021 lúc 19:58

`a)f(x):g(x)` dư 2

`=>f(x)-2\vdots g(x)`

`=>x^3-3x^2+5x-a-2\vdots  x-1`

`=>x^3-x^2-2x^2+2x+3x-3-a+1\vdots  x-1`

`=>x^2(x-1)-2x(x-1)+3(x-1)-a+1\vdots  x-1`

`=>(x-1)(x^2-2x+3)-a+1\vdots  x-1`

Mà `(x-1)(x^2-2x+3)\vdots x-1`

`=>-a+1=0=>a=1`

Bình luận (0)
NT
26 tháng 8 2021 lúc 23:16

Ta có: f(x):g(x)

\(=\dfrac{x^3-3x^2+5x-a}{x-1}\)

\(=\dfrac{x^3-x^2-2x^2+2x+3x-3-a+3}{x-1}\)

\(=x^2-2x+3+\dfrac{-a+3}{x-1}\)

Để f(x):g(x) có số dư là 2 thì 3-a=2

hay a=1

Bình luận (0)
BB
Xem chi tiết
TT
15 tháng 1 2021 lúc 19:40

\(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)

Giả sử \(f\left(x\right)\) chia cho \(x^2-5x+6\) được thương là\(Q\left(x\right)\)  và dư \(ax+b\)

=> \(f\left(x\right)=Q\left(x\right).\left(x-2\right)\left(x-3\right)+ax+b\)

Có \(f\left(x\right)\) chia cho x - 3 dư 7 ; chia cho x - 2 dư 5

=> \(\left\{{}\begin{matrix}f\left(3\right)=7\\f\left(2\right)=5\end{matrix}\right.\) 

=> \(\left\{{}\begin{matrix}3a+b=7\\2a+b=5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

=> \(f\left(x\right)\)chia cho \(x^2-5x+6\) dư 2x + 1

Bình luận (0)
H24
15 tháng 1 2021 lúc 19:46

Giả sử đa thức bị chia là m (x)

Gia sử  thương là : q( x )

Vì đa thức chia có bậc là 2 , Suy ra thương có bậc là 1

Suy ra , ta có : m( x ) =( x2 - 5x + 6 )                 q( x ) = ax + b

Đi tìm X

x2 - 5x + 6 = 0 

x2 - 2x - 3x + 6 = 0

 x( x - 2) - 3(x - 2) = 0

 ( x - 2)( x - 3) = 0

Vậy  x = 2 hoặc x = 3

Ta có  giả thiết f( x ) chia cho x - 2 dư 5 ,từ đó ta được :

f( 2 ) = 5 

-> 2a + b = 5 ( 1)

Ta lại có giả thiết f( x ) chia cho x - 3 dư 7 ,Từ đó  ta được :

f( 3 ) = 7

-> 3a + b = 7 ( 2)

Từ ( 1  và  2) suy ra : a = 2 ; b = 1

Suy ra : f( x ) = ( x2 - 5x + 6 )      Thay số  q( x ) = 2x + 1

Vậy dư là 2x +1 

Bình luận (0)