Những câu hỏi liên quan
HD
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
MY
Xem chi tiết
CT
12 tháng 10 2021 lúc 10:03

Hàm số $y=\sqrt{x-m+2}+\sqrt{x-2m+3}$ xác định khi và chỉ khi
\[\left\{\begin{aligned}&x-m+2\geq 0 \\&x-2m+3\geq 
0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&x\geq m-2 
\\&x\geq 2m-3.\end{aligned}\right. \tag{$*$}\]

Khi $m-2\geq 2m-3$ hay $m\leq 1$ thì $(*)$ tương đương $x\geq m-2$. Do đó tập xác định của hàm số đã cho là $[m-2;+\infty)$.
Yêu cầu bài toán thỏa mãn khi và chỉ khi
\[(0;+\infty)\subset [m-2;+\infty) \Leftrightarrow \left\{\begin{aligned}&m\leq 1 \\&m-2\leq 0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&m\leq 1 \\&m\leq 2\end{aligned}\right. \Leftrightarrow m\leq 1.\]Khi $m-2< 2m-3$ hay $m> 1$ thì $(*)$ tương đương $x\geq 2m-3$. Do đó tập xác định của hàm số đã cho là $[2m-3;+\infty)$.
Yêu cầu bài toán thỏa mãn khi và chỉ khi
\[(0;+\infty)\subset [2m-3;+\infty) \Leftrightarrow \left\{\begin{aligned}&m>1 \\&2m-3\leq 0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&m> 1 \\&m\leq \dfrac{3}{2}\end{aligned}\right. \Leftrightarrow 1<m\leq \dfrac{3}{2}.\]

Kết hợp hai trường hợp trên, ta được $m\leq \dfrac{3}{2}$ là các giá trị thỏa mãn yêu cầu bài toán.

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
PT
Xem chi tiết
NQ
23 tháng 8 2021 lúc 14:07

để hàm số xác định với mọi x thuộc R thì 

\(2m\cos^2x+\left(2-m\right)\cos x+4m-1\ge0\Leftrightarrow m\left(2cos^2x-cosx+4\right)\ge1-2cosx\)

mà \(2cos^2x-cosx+4>0\) nên :

\(m\ge\frac{1-2cosx}{2cos^2x-cosx+4}\)\(\Leftrightarrow\)\(m\ge max\left(\frac{1-2cosx}{2cos^2x-cosx+4}\right)=\frac{3}{7}\)

vậy điều kiện của m là : \(m\ge\frac{3}{7}\)

Bình luận (0)
 Khách vãng lai đã xóa
GL
Xem chi tiết
NH
14 tháng 8 2016 lúc 16:15

Hỏi đáp Toán

Bình luận (0)
NV
Xem chi tiết
NT
Xem chi tiết
NL
27 tháng 12 2022 lúc 19:00

Hàm xác định trên R khi và chỉ khi:

\(5sin4x-6cos4x+2m-1\ge0;\forall x\)

\(\Leftrightarrow5sin4x-6cos4x\ge1-2m;\forall x\)

\(\Leftrightarrow1-2m\le\min\limits_{x\in R}\left(5sin4x-6cos4x\right)\)

Ta có: \(\left(5sin4x-6cos4x\right)^2\le\left(5^2+\left(-6\right)^2\right)\left(sin^24x+cos^24x\right)=61\)

\(\Rightarrow5sin4x-6cos4x\ge-\sqrt{61}\)

\(\Rightarrow1-2m\le-\sqrt{61}\)

\(\Rightarrow m\ge\dfrac{1+\sqrt{61}}{2}\)

Bình luận (0)
H24
Xem chi tiết
NL
27 tháng 1 2021 lúc 18:28

Với \(m=-1\) ktm

Với \(m\ne-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(3m-3\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left(m-1\right)\left(-2m-4\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow m>1\)

Bình luận (0)