Những câu hỏi liên quan
H24
Xem chi tiết
AH
5 tháng 12 2019 lúc 12:04

Lời giải:

Ta có:

\(2x^2+3y^2=7xy\)

\(\Leftrightarrow 2x^2-7xy+3y^2=0\)

\(\Leftrightarrow 2x^2-6xy-xy+3y^2=0\)

\(\Leftrightarrow 2x(x-3y)-y(x-3y)=0\)

\(\Leftrightarrow (x-3y)(2x-y)=0\Rightarrow \left[\begin{matrix} x=3y\\ x=\frac{y}{2}\end{matrix}\right.\)

Nếu $x=3y$:

\(P=-3xy+6y-1=-3.3y.y+6y-1=-9y^2+6y-1=-(9y^2-6y+1)\)

\(=-(3y-1)^2\leq 0, \forall y>0\)

Nếu $x=\frac{y}{2}$:

\(P=-3.\frac{y}{2}.y+6y-1\). Với $y>0$ thì $P$ trong trường hợp này vẫn có thể nhận giá trị dương.

Do đó bạn xem lại đề bài.

Bình luận (0)
 Khách vãng lai đã xóa
HL
Xem chi tiết
NL
8 tháng 1 2023 lúc 21:04

Từ giả thiết:

\(29\le y^2+2xy+4x\le y^2+2xy+x^2+4\)

\(\Rightarrow\left(x+y\right)^2\ge25\Rightarrow x+y\ge5\)

Đặt \(P=2x+3y+\dfrac{4}{x}+\dfrac{18}{y}\)

\(\Rightarrow P=x+y+\left(x+\dfrac{4}{x}\right)+2\left(y+\dfrac{9}{y}\right)\ge5+2\sqrt{\dfrac{4x}{x}}+2.2\sqrt{\dfrac{9y}{y}}=21\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;3\right)\)

Bình luận (0)
NC
Xem chi tiết
NM
18 tháng 12 2021 lúc 10:05

Áp dụng BĐT Cauchy-Schwarz:

\(\dfrac{1}{x+y}+\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\ge\dfrac{16}{3x+3y+2z}\\ \Leftrightarrow\dfrac{1}{3x+2y+2z}\le\dfrac{1}{16}\left(\dfrac{2}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\right)\\ \Leftrightarrow\sum\dfrac{1}{3x+2y+2z}\le\dfrac{1}{16}\left(\dfrac{4}{x+y}+\dfrac{4}{y+z}+\dfrac{4}{z+x}\right)=\dfrac{4}{16}\cdot6=\dfrac{3}{2}\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)

Bình luận (0)
ND
Xem chi tiết
DA
Xem chi tiết
BM
Xem chi tiết
ZZ
22 tháng 11 2019 lúc 20:57

\(x^2+2y^2-3xy+2x-4y+3=0\)

\(\Leftrightarrow4x^2+8y^2-12xy+8x-16y+12=0\)

\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)-y^2+8x-16y+12=0\)

\(\Leftrightarrow\left(2x-3y\right)^2+4\left(2x-3y\right)+4-\left(y^2-4y+4\right)+6=0\)

\(\Leftrightarrow\left(2x-3y+2\right)^2-\left(y-2\right)^2+6=0\)

\(\Leftrightarrow\left(2x-3y+2-y+2\right)\left(2x-3y+2+y-2\right)=-6\)

\(\Leftrightarrow\left(2x-4y+4\right)\left(2x-2y\right)=-6\)

\(\Leftrightarrow\left(x-2y+2\right)\left(x-y\right)=-\frac{3}{2}\)

Đến đây ta thấy vô lý

P/S:is that true ?

Bình luận (0)
 Khách vãng lai đã xóa
DP
13 tháng 2 2022 lúc 0:06

=-12 mà CTV

Bình luận (0)
 Khách vãng lai đã xóa
VT
Xem chi tiết
KT
22 tháng 3 2020 lúc 19:15

Bài này bạn phải đoán điểm rơi rồi nhóm tách theo bậc.

Bình luận (0)
 Khách vãng lai đã xóa
H24
24 tháng 3 2020 lúc 10:42

Kiểm tra \(\left(x;y;z\right)=\left(\frac{79}{36},\frac{61}{72},\frac{29}{54}\right)\), đề sai.

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
TH
30 tháng 1 2021 lúc 15:37

Ta có: \(\left(2x+3y\right)^2< \left(2x+3y\right)^2+5x+5y+1< \left(2x+3y+2\right)^2\).

Do đó để \(\left(2x+3y\right)^2+5x+5y+1\) là số chính phương thì \(\left(2x+3y\right)^2+5x+5y+1=\left(2x+3y+1\right)^2\Leftrightarrow x=y\).

Vậy x = y

Bình luận (1)
NT
Xem chi tiết
NL
15 tháng 3 2022 lúc 22:32

\(1=2\sqrt{xy}+\sqrt{xz}\le x+y+\dfrac{1}{2}\left(x+z\right)=\dfrac{1}{2}\left(3x+2y+z\right)\)

\(\Rightarrow3x+2y+z\ge2\)

BĐT cần chứng minh tương đương:

\(\dfrac{5xy}{z}+\dfrac{4xz}{y}+\dfrac{3yz}{x}\ge4\)

Ta có:

\(VT=3\left(\dfrac{xy}{z}+\dfrac{xz}{y}\right)+2\left(\dfrac{xy}{z}+\dfrac{yz}{x}\right)+\left(\dfrac{xz}{y}+\dfrac{yz}{x}\right)\)

\(VT\ge3.2\sqrt{\dfrac{x^2yz}{yz}}+2.2\sqrt{\dfrac{xy^2z}{xz}}+2\sqrt{\dfrac{xyz^2}{xy}}=2\left(3x+2y+z\right)\ge2.2=4\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

Bình luận (1)