Từ giả thiết:
\(29\le y^2+2xy+4x\le y^2+2xy+x^2+4\)
\(\Rightarrow\left(x+y\right)^2\ge25\Rightarrow x+y\ge5\)
Đặt \(P=2x+3y+\dfrac{4}{x}+\dfrac{18}{y}\)
\(\Rightarrow P=x+y+\left(x+\dfrac{4}{x}\right)+2\left(y+\dfrac{9}{y}\right)\ge5+2\sqrt{\dfrac{4x}{x}}+2.2\sqrt{\dfrac{9y}{y}}=21\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;3\right)\)