Những câu hỏi liên quan
LJ
Xem chi tiết
NL
15 tháng 3 2022 lúc 23:40

ĐKXĐ: \(x\ge1\)

Do \(\sqrt{x-\sqrt{x^2-1}}.\sqrt{x+\sqrt{x^2-1}}=\sqrt{x^2-x^2+1}=1\)

Đặt \(\sqrt{x-\sqrt{x^2-1}}=t\Rightarrow\sqrt{x+\sqrt{x^2-1}}=\dfrac{1}{t}\)

Phương trình trở thành:

\(t+\dfrac{1}{t}=2\Rightarrow t^2-2t+1=0\Rightarrow t=1\)

\(\Rightarrow\sqrt{x-\sqrt{x^2-1}}=1\Leftrightarrow x-\sqrt{x^2-1}=1\)

\(\Leftrightarrow x-1=\sqrt{x^2-1}\)

\(\Rightarrow x^2-2x+1=x^2-1\)

\(\Rightarrow x=1\) (thỏa mãn)

Bình luận (0)
HD
Xem chi tiết
LJ
Xem chi tiết
NT
30 tháng 1 2024 lúc 14:36

\(\sqrt{x^2-x+1}+\sqrt{x^2-9x+9}=2x\)

=>\(\sqrt{x^2-x+1}-x+\sqrt{x^2-9x+9}-x=0\)

=>\(\dfrac{x^2-x+1-x^2}{\sqrt{x^2-x+1}+x}+\dfrac{x^2-9x+9-x^2}{\sqrt{x^2-9x+9}+x}=0\)

=>\(\left(-x+1\right)\left(\dfrac{1}{\sqrt{x^2-x+1}+x}+\dfrac{9}{\sqrt{x^2-9x+9}+x}\right)=0\)

=>-x+1=0

=>x=1

Bình luận (0)
NH
Xem chi tiết
DT
Xem chi tiết
LN
Xem chi tiết
TT
Xem chi tiết
NM
Xem chi tiết
PH
19 tháng 8 2017 lúc 13:23

a) dat x-1=a

x=a+1

\(a+1+\sqrt{5+\sqrt{a}}=6\)

\(5-a=\sqrt{5+\sqrt{a}}\)

\(25-10a+a^2=5+\sqrt{a}\)

\(20-10a+a^2-\sqrt{a}=0\)

(a - \sqrt{5} - 5) (a + \sqrt{a} - 4) = 0

Bình luận (0)
NM
19 tháng 8 2017 lúc 14:43

đúng nhưng b,c,d đâu

Bình luận (0)
PH
20 tháng 8 2017 lúc 17:01

ý c)  dk tu viet

\(\left(\sqrt{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}}\right)^2=4\)

\(x-\sqrt{x^2-1}+x+\sqrt{x^2-1}+2\sqrt{\left(x-\sqrt{x^2-1}\right)\left(x+\sqrt{x^2-1}\right)}=4\)

\(2x+2\sqrt{x^2-x^2+1}=4\)

\(2x+2=4\)

2x=2

x=1

Bình luận (0)
MP
Xem chi tiết