Những câu hỏi liên quan
QL
Xem chi tiết
HM
23 tháng 9 2023 lúc 23:42

a) \(\sqrt {2 - x}  + 2x = 3\)\( \Leftrightarrow \sqrt {2 - x}  = 3 - 2x\)  (1)

Ta có: \(3 - 2x \ge 0 \Leftrightarrow x \le \frac{3}{2}\)

Bình phương hai vế của (1) ta được:

\(\begin{array}{l}2 - x = {\left( {3 - 2x} \right)^2}\\ \Rightarrow 2 - x = 9 - 12x + 4{x^2}\\ \Leftrightarrow 4{x^2} - 11x + 7 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\left( {TM} \right)\\x = \frac{7}{4}\left( {KTM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ 1 \right\}\)

b) \(\sqrt { - {x^2} + 7x - 6}  + x = 4\)\( \Leftrightarrow \sqrt { - {x^2} + 7x - 6}  = 4 - x\)  (2)

Ta có: \(4 - x \ge 0 \Leftrightarrow x \le 4\)

Bình phương hai vế của (2) ta được:

\(\begin{array}{l} - {x^2} + 7x - 6 = {\left( {4 - x} \right)^2}\\ \Leftrightarrow  - {x^2} + 7x - 6 = 16 - 8x + {x^2}\\ \Leftrightarrow 2{x^2} - 15x + 22 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\left( {TM} \right)\\x = \frac{{11}}{2}\left( {KTM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ 2 \right\}\)

Bình luận (0)
DD
Xem chi tiết
MH
26 tháng 11 2021 lúc 5:36

\(-5x+6=11x-1\)

\(-5x-11x=-1-6\)

\(-16x=-7\)

\(16x=7\)

\(x=\dfrac{7}{16}\)

Bình luận (0)
LP
Xem chi tiết
IR
10 tháng 9 2023 lúc 14:26

a) \(x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow-7x^2-9x+4+x^3+3x^2+4x+2=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow-\left(7x^2+9x-4\right)+\left(x+1\right)^3+x+1=\sqrt[3]{7x^2+9x-4}\) (*)

Đặt \(\sqrt[3]{7x^2+9x-4}=a;x+1=b\)

Khi đó (*) \(\Leftrightarrow-a^3+b^3+b=a\)

\(\Leftrightarrow\left(b-a\right).\left(b^2+ab+a^2+1\right)=0\)

\(\Leftrightarrow b=a\)

Hay \(x+1=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow\left(x+1\right)^3=7x^2+9x-4\)

\(\Leftrightarrow x^3-4x^2-6x+5=0\)

\(\Leftrightarrow x^3-4x^2-5x-x+5=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-1\pm\sqrt{5}}{2}\end{matrix}\right.\)

Bình luận (0)
NT
Xem chi tiết
EH
Xem chi tiết
H24
Xem chi tiết
MY
7 tháng 4 2022 lúc 20:14

\(\sqrt{7x+7}+\sqrt{7x-6}=t\ge0\)

\(bpt\Leftrightarrow t+t^2< 182\Leftrightarrow-14< t< 13\Leftrightarrow t< 13\Leftrightarrow\sqrt{7x+7}+\sqrt{7x-6}< 13\left(đk:x\ge\dfrac{6}{7}\right)\Leftrightarrow14x+1+2\sqrt{\left(7x+7\right)\left(7x-6\right)}< 169\Leftrightarrow2\sqrt{\left(7x+7\right)\left(7x-6\right)}< 168-14x\Leftrightarrow\left\{{}\begin{matrix}\left(7x+7\right)\left(7x-6\right)\ge0\\168-14x\ge0\\4\left(7x+7\right)\left(7x-6\right)< \left(168-14x\right)^2\end{matrix}\right.\)

\(giảibpt\Rightarrowđáp\) \(số\)

 

Bình luận (0)
H24
Xem chi tiết
ZZ
3 tháng 9 2020 lúc 9:00

\(ĐK:x\ge-\frac{3}{2}\)

Ta có:

\(x^2+5x+8=3\sqrt{2x^3+5x^2+7x+6}\)

\(\Leftrightarrow\left(x^2+x+2\right)+2\left(2x+3\right)=3\sqrt{2x^3+5x^2+7x+6}\)

\(\Leftrightarrow\left(x^2+x+2\right)+2\left(2x+3\right)=3\sqrt{\left(x^2+x+2\right)\left(2x+3\right)}\)

Đặt \(\sqrt{x^2+x+2}=a;\sqrt{2x+3}=b\)

Khi đó: \(a^2+2b^2=3ab\Leftrightarrow\left(a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow\sqrt{x^2+x+2}=\sqrt{2x+3}\left(hoac\right)\sqrt{x^2+x+2}=2\sqrt{2x+3}\)

Với \(\sqrt{x^2+x+2}=\sqrt{2x+3}\Rightarrow x^2+x+2=2x+3\Leftrightarrow x^2-x-1=0\Leftrightarrow x=\frac{1+\sqrt{5}}{2};x=\frac{1-\sqrt{5}}{2}\)Tự đối chiếu điều kiện xác định -,-

\(\sqrt{x^2+x+2}=2\sqrt{2x+3}\Rightarrow x^2+x+2=4\left(2x+3\right)\Leftrightarrow x^2-7x-10=0\)

Tới đây bí rồi huhu

Bình luận (0)
 Khách vãng lai đã xóa
PT
25 tháng 1 2018 lúc 19:30

bình phương hai vế rồi rút gọn, phân tích thành nhân tử

\(\left(x+1\right)\left(x^3-9x^2+7x+10\right)=0\)0

Bình luận (0)
VS
Xem chi tiết
AN
11 tháng 9 2018 lúc 16:47

Đặt \(\hept{\begin{cases}\sqrt[6]{x-3}=a\\\sqrt[6]{x-7}=b\end{cases}}\)

\(\Rightarrow a^2+b^2-6ab=0\)

Dễ thây a  = 0 không là nghiệm.

Đặt \(b=ta\)

\(\Rightarrow a^2+t^2a^2-6ta^2=0\)

\(\Leftrightarrow t^2-6t+1=0\)

Làm nôt

Bình luận (0)
MT
Xem chi tiết