Những câu hỏi liên quan
H24
Xem chi tiết
H24
7 tháng 8 2018 lúc 8:55

help me

Bình luận (0)
PQ
7 tháng 8 2018 lúc 14:24

\(a)\) Ta có : 

\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)

\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)

\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)

\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)

Lại có : 

\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)

\(\Rightarrow\)\(x=2019\)

Vậy \(x=2019\)

Chúc bạn học tốt ~ 

Bình luận (0)
PQ
7 tháng 8 2018 lúc 14:35

\(b)\) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)

\(\Leftrightarrow\)\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow\)\(1-\frac{2}{x+1}=\frac{2017}{2019}\)

\(\Leftrightarrow\)\(\frac{2}{x+1}=1-\frac{2017}{2019}\)

\(\Leftrightarrow\)\(\frac{2}{x+1}=\frac{2}{2019}\)

\(\Leftrightarrow\)\(x+1=2019\)

\(\Leftrightarrow\)\(x=2019-1\)

\(\Leftrightarrow\)\(x=2018\)

Vậy \(x=2018\)

Chúc bạn học tốt ~ 

Bình luận (0)
TP
Xem chi tiết
LD
19 tháng 6 2017 lúc 7:10

Ta có : \(\frac{x-1}{2017}+\frac{x-2}{2018}-\frac{x-3}{2019}=\frac{x-4}{2020}\)

\(\Rightarrow\frac{x-1}{2017}+\frac{x-2}{2018}=\frac{x-4}{2020}+\frac{x-3}{2019}\)

\(\Rightarrow1+\frac{x-1}{2017}+1+\frac{x-2}{2018}=1+\frac{x-4}{2020}+1+\frac{x-3}{2019}\)

\(\Rightarrow\frac{2016+x}{2017}+\frac{2016+x}{2018}=\frac{2016+x}{2020}+\frac{2016+x}{2019}\)

\(\Rightarrow\frac{2016+x}{2017}+\frac{2016+x}{2018}-\frac{2016+x}{2019}-\frac{2016+x}{2020}=0\)

\(\Rightarrow\left(2016+x\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
\(\text{Mà : }\)\(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\)

\(\text{Nên : }\) \(2016+x=0\)

\(\Rightarrow x=-2016\)

Bình luận (0)
TP
1 tháng 1 2018 lúc 20:22

Giỏi wá!!!!!!!!

Bình luận (0)
OK
18 tháng 1 2019 lúc 15:45

Ta có : x−12017 +x−22018 −x−32019 =x−42020 

⇒x−12017 +x−22018 =x−42020 +x−32019 

⇒1+x−12017 +1+x−22018 =1+x−42020 +1+x−32019 

⇒2016+x2017 +2016+x2018 =2016+x2020 +2016+x2019 

⇒2016+x2017 +2016+x2018 −2016+x2019 −2016+x2020 =0

⇒(2016+x)(12017 +12018 −12019 −12020 )=0
Mà : 12017 +12018 −12019 −12020 ≠0

Nên : 2016+x=0

⇒x=−2016

Bình luận (0)
DA
Xem chi tiết
NP
22 tháng 7 2018 lúc 8:15

\(\frac{x+4}{2016}+\frac{x+3}{2017}=\frac{x+2}{2018}+\frac{x+1}{2019}\)

\(\Rightarrow\frac{x+4}{2016}+1+\frac{x+3}{2017}+1=\frac{x+2}{2018}+1+\frac{x+1}{2019}+1\)

\(\Rightarrow\frac{x+4+2016}{2016}+\frac{x+3+2017}{2017}=\frac{x+2+2018}{2018}+\frac{x+1+2019}{2019}\)

\(\Rightarrow\frac{x+2020}{2016}+\frac{x+2020}{2017}=\frac{x+2020}{2018}+\frac{x+2020}{2019}\)

\(\Rightarrow\frac{x+2020}{2016}+\frac{x+2020}{2017}-\frac{x+2020}{2018}-\frac{x+2020}{2019}=0\)

\(\Rightarrow\left(x+2020\right)\left(\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}\right)=0\)

\(\Rightarrow x+2020=0\) vì \(\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}>0\)

\(\Rightarrow x=-2020\)

Bình luận (0)
LL
22 tháng 7 2018 lúc 8:13

= 100 - 100 = 0 làm ơn ks mình đi mình sẽ ks lại cho mà

Bình luận (0)
DA
4 tháng 2 2019 lúc 17:03

uk

Bình luận (0)
DN
Xem chi tiết
VT
17 tháng 8 2019 lúc 21:53

\(\frac{x-1}{2019}+\frac{x-2}{2018}=\frac{x-3}{2017}+\frac{x-4}{2016}\)

\(\Leftrightarrow\left(\frac{x-1}{2019}-1\right)+\left(\frac{x-2}{2018}-1\right)=\left(\frac{x-3}{2017}-1\right)+\left(\frac{x-4}{2016}-1\right)\)

\(\Leftrightarrow\frac{x-2020}{2019}+\frac{x-2020}{2018}=\frac{x-2020}{2017}+\frac{x-2020}{2016}\)

\(\Leftrightarrow\frac{x-2020}{2019}+\frac{x-2020}{2018}-\frac{x-2020}{2017}-\frac{x-2020}{2016}=0\)

\(\Leftrightarrow\left(x-2020\right).\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)=0\)

\(\Leftrightarrow x-2020=0\)

\(\Leftrightarrow x=0+2020\)

\(\Rightarrow x=2020\)

Vậy \(x=2020.\)

Chúc bạn học tốt!

Bình luận (0)
CL
Xem chi tiết
TA
16 tháng 7 2018 lúc 16:20

<=>[ (x-1)/2019] -1 +[(x-2)/2018]-1 = [(x-3)/2017]-1 +[(x-4)/2016] -1

<=> (x-2020)/2019 +(x-2020)/2018 = (x-2020)/2017 + (x-2020)/2016

<=> (x-2020)( 1/2019+1/2018-1/2017-1/2016)= 0

=> x-2020= 0 => x= 2020

Bình luận (0)
VA
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
TP
8 tháng 3 2019 lúc 11:46

buithianhtho làm cách này mà ko có máy tính thì đến bao giờ ?

\(\dfrac{x-3}{2017}+\dfrac{x-2}{2018}+\dfrac{x-1}{2019}=3\)

\(\Leftrightarrow\dfrac{x-3}{2017}-1+\dfrac{x-2}{2018}-1+\dfrac{x-1}{2019}-1=3-1-1-1\)

\(\Leftrightarrow\dfrac{x-3-2017}{2017}+\dfrac{x-2-2018}{2018}+\dfrac{x-1-2019}{2019}=0\)

\(\Leftrightarrow\dfrac{x-2020}{2017}+\dfrac{x-2020}{2018}+\dfrac{x-2020}{2019}=0\)

\(\Leftrightarrow\left(x-2020\right)\left(\dfrac{1}{2017}+\dfrac{1}{2018}+\dfrac{1}{2019}\right)=0\)

\(\dfrac{1}{2017}+\dfrac{1}{2018}+\dfrac{1}{2019}\ne0\)

\(\Leftrightarrow x-2020=0\)

\(\Leftrightarrow x=2020\)

Vậy....

Bình luận (0)
BT
8 tháng 3 2019 lúc 11:17

\(\frac{x-3}{2017}\)+\(\frac{x-2}{2018}\)+\(\frac{x-1}{2019}\)=3

= 4074342(x-3)+4072323(x-2)+4070306(x-1)=24653843442

=07342x- 12223026+ 4072323x-8144646+4070306x- 4070306= 24653843442

12216971x- 24437978= 24653843442

12216971x=24653843442+24437978

12216971x= 24678281420

x= 2020

Bình luận (2)
BT
8 tháng 3 2019 lúc 11:20

chỗ dòng thứ 3 số đầu tiên là 4074342x-....

Bình luận (0)
H24
Xem chi tiết
LC
24 tháng 8 2019 lúc 22:35

Ta có: \(\frac{x-2019}{2018}+\frac{x-2018}{2017}=\frac{x-2017}{2016}+\frac{x-2016}{2015}\)

\(\Leftrightarrow\left(\frac{x-2019}{2018}+1\right)+\left(\frac{x-2018}{2017}+1\right)=\left(\frac{x-2017}{2016}+1\right)+\left(\frac{x-2016}{2015}+1\right)\)

\(\Leftrightarrow\frac{x-1}{2018}+\frac{x-1}{2017}=\frac{x-1}{2016}+\frac{x-1}{2015}\)

\(\Leftrightarrow\frac{x-1}{2018}+\frac{x-1}{2017}-\frac{x-1}{2016}-\frac{x-1}{2015}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)

\(\Leftrightarrow x-1=0\)( vì \(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\ne0\))

\(\Leftrightarrow x=1\)

Vạy x=1

Bình luận (0)