Những câu hỏi liên quan
LT
Xem chi tiết
LB
Xem chi tiết
NL
8 tháng 2 2021 lúc 12:29

a, ĐKXĐ để hàm được xác định : \(3-m\ne0\)

\(\Leftrightarrow m\ne3\)

b, - Với x < 0 để hàm số đồng biến thì : \(3-m< 0\)

\(\Leftrightarrow m>3\)

Vậy ...

c, - Để y = 0 là giá trị nhỏ nhất của hàm số tại x = 0 

\(\Leftrightarrow a>0\)

\(\Leftrightarrow3-m>0\)

\(\Leftrightarrow m< 3\)

Vậy ...

 

Bình luận (0)
NT
8 tháng 2 2021 lúc 12:32

a) Để hàm số \(y=\left(3-m\right)x^2\) được xác định thì \(3-m\ne0\)

hay \(m\ne3\)

b) Để hàm số \(y=\left(3-m\right)x^2\) đồng biến với mọi x<0 thì \(3-m< 0\)

\(\Leftrightarrow m>3\)

c) Để y=0 là giá trị nhỏ nhất của hàm số tại x=0 thì 3-m>0

hay m<3

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 8 2018 lúc 11:17





Bình luận (0)
HD
Xem chi tiết
AM
Xem chi tiết
NT
19 tháng 12 2021 lúc 9:27

b: Để hàm số đồng biến thì m-1>0

hay m>1

Bình luận (2)
MK
Xem chi tiết

Với m=−1 thì PT f(x)=0 có nghiệm x=1 (chọn)

Với m≠−1 thì f(x) là đa thức bậc 2 ẩn x

f(x)=0 có nghiệm khi mà Δ′=m2−2m(m+1)≥0

⇔−m2−2m≥0⇔m(m+2)≤0

⇔−2≤m≤0

Tóm lại để f(x)=0 có nghiệm thì 

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
8 tháng 4 2019 lúc 7:28

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 9 2017 lúc 12:46

Bình luận (0)
MN
Xem chi tiết
QB
10 tháng 4 2021 lúc 20:21

x2-2(m-1)x+m2-3m=0

'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1

áp dụng hệ thức Vi-ét ta được 

x1+x2=2(m-1)                                               (1)

x1*x2=m2-3m                                         (2)  

a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1

b) để PT có duy nhất một nghiệm âm thì x1*x2 <0

Bình luận (0)
NT
10 tháng 4 2021 lúc 20:54

e) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)

\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)

\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)

\(\Leftrightarrow2m^2-2m-4=0\)(1)

\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)

Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)

Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)

Bình luận (0)
HH
Xem chi tiết
MH
19 tháng 2 2022 lúc 8:53

\(mx-x-m+2=0\)

\(x\left(m-1\right)=m-2\)

Nếu m=1 ⇒ \(0x=-1\) (vô nghiệm)

Nếu m≠1 ⇒ \(x=\dfrac{m-2}{m-1}\)

Vậy ...

Bình luận (0)