Những câu hỏi liên quan
NN
Xem chi tiết
GP
14 tháng 7 2021 lúc 19:36

a) (x+3)(x^2-3x+9)-(54+x^3)

= x^3- 3x^2+9x+3x^2-9x+27-54-x63

= -27

b) (2x + y)(4x^2 – 2xy + y^2) – (2x – y)(4x^2+ 2xy + y^2)

= (2x + y)[(2x)^2 – 2x.y + y^2] – (2x – y)[(2x)^2 + 2x.y + y^2]

= [(2x)3^3+ y^3] – [(2x)^3 – y^3]

= (2x)^3 + y^3 – (2x)^3 + y^3

= 2y^3

Bình luận (0)
GR
14 tháng 7 2021 lúc 19:49

a)(x+3)(X^2-3x+9)-(54+x^3)

\(x^3\)\(3^3 \) - 54 -\(x^3\)

= 27- 54

= -27

b)(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)

\((2x)^3\) + \(y^3\)  - [\((2x)^3\) - \(y^3\) ]

\(8x^3\) + \(y^3\) - \(8x^3\) + \(y^3\)

\(2y^3\)

Bình luận (0)
NT
14 tháng 7 2021 lúc 22:47

a) Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)

\(=x^3+27-54-x^3\)

=-27

Bình luận (0)
DN
Xem chi tiết
NT
12 tháng 2 2022 lúc 13:46

\(=\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-2xy+xy-2y^2}\right):\dfrac{\left(2x^2+y\right)^2-4}{x\left(x+y\right)+\left(x+y\right)}:\dfrac{x+y}{2x^2+y+2}\)

\(=\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{\left(x-2y\right)\left(x+y\right)}\right)\cdot\dfrac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\cdot\dfrac{2x^2+y+2}{x+y}\)

\(=\dfrac{y^2-x^2-x^2-y^2-y+2}{\left(x-2y\right)\left(x+y\right)}\cdot\dfrac{x+1}{2x^2+y-2}\)

\(=\dfrac{-\left(2x^2+y-2\right)}{\left(x-2y\right)\left(x+y\right)}\cdot\dfrac{x+1}{2x^2+y-2}=\dfrac{-\left(x+1\right)}{\left(x-2y\right)\left(x+y\right)}\)

Bình luận (0)
H24
Xem chi tiết
DA
Xem chi tiết
PL
26 tháng 6 2019 lúc 8:35

\(a,\left(x-2\right)^3-x\left(x-1\right)\left(x+1\right)+6x\left(x-3\right)\)

\(=x^3-6x^2+12x-27-x^3+x+6x^2-18x\)

\(=-5x-27\)

\(b,\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=8x^3+y^3-\left(8x^3-y^3\right)\)

\(=8x^3+y^3-8x^3+y^3=2y^3\)

\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left(x+y+z-x-y\right)^2\)

\(=z^2\)

Bình luận (0)
NA
26 tháng 6 2019 lúc 9:00

a)

=\(x^3-6x^2+12x+8-27-x^3+x+6x^2-18x\) 

=-5x-19

b)

=\(8x^3+y^3-8x^3+y^3\) 

=\(2y^3\) 

c)

=(x+y+z-x-y)\(^2\) +x+y

=\(z^2+x+y\) 

hc tốt

Bình luận (0)
DN
Xem chi tiết
NT
26 tháng 6 2021 lúc 20:20

a,sửa đề :  \(\left(\frac{1}{x^2+4x+4}-\frac{1}{x^2-4x+4}\right):\left(\frac{1}{x+2}+\frac{1}{x^2-4}\right)\)

\(=\left(\frac{1}{\left(x+2\right)^2}-\frac{1}{\left(x-2\right)^2}\right):\left(\frac{x-2+1}{\left(x+2\right)\left(x-2\right)}\right)\)

\(=\left(\frac{x^2-4x+4-x^2-4x-4}{\left(x+2\right)^2\left(x-2\right)^2}\right):\left(\frac{x-1}{\left(x+2\right)\left(x-2\right)}\right)\)

\(=\frac{-8x\left(x+2\right)\left(x-2\right)}{\left(x+2\right)^2\left(x-2\right)^2\left(x-1\right)}=\frac{-8x}{\left(x-1\right)\left(x^2-4\right)}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
26 tháng 6 2021 lúc 20:27

b, \(\left(\frac{2x}{2x-y}-\frac{4x^2}{4x^2+4xy+y^2}\right):\left(\frac{2x}{4x^2-y^2}+\frac{1}{y-2x}\right)\)

\(=\left(\frac{2x}{2x-y}-\frac{4x^2}{\left(2x+y\right)^2}\right):\left(\frac{2x}{\left(2x-y\right)\left(2x+y\right)}-\frac{1}{2x-y}\right)\)

\(=\left(\frac{2x\left(2x+y\right)^2-4x^2\left(2x-y\right)}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{2x-\left(2x+y\right)}{\left(2x-y\right)\left(2x+y\right)}\right)\)

\(=\left(\frac{8x^3+8x^2y+2xy^2-8x^3+4x^2y}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{-y}{\left(2x-y\right)\left(2x+y\right)}\right)\)

\(=-\left(\frac{12x^2y+xy^2}{2x+y}\right)=\frac{-12x^2y-xy^2}{2x+y}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H9
7 tháng 10 2023 lúc 10:41

a) ĐKXĐ: \(x\ne2y,x\ne-y;x\ne-1\) 

b) \(B=\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\) 

\(B=\left[\dfrac{y-x}{x-2y}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{4x^4+4x^2y+y^2-4}{x\left(x+y\right)+\left(x+y\right)}\)

\(B=\left[\dfrac{\left(y-x\right)\left(x+y\right)}{\left(x-2y\right)\left(x+y\right)}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)

\(B=\dfrac{y^2-x^2-x^2-y^2-y+2}{\left(x+y\right)\left(x-2y\right)}:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)

\(B=\dfrac{-2x^2-y+2}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)

\(B=\dfrac{-\left(2x^2+y-2\right)}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)

\(B=\dfrac{-\left(x+1\right)}{\left(x-2y\right)\left(2x^2+y+2\right)}\)

Bình luận (0)
LG
Xem chi tiết
HP
21 tháng 11 2021 lúc 22:01

1. \(\dfrac{x^3-4x^2+4x}{x^2-4}=\dfrac{x\left(x^2-4x+4\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x-2\right)}{x+2}\)

 

Bình luận (1)
HP
21 tháng 11 2021 lúc 22:11

Đợi anh chút

Bình luận (0)
NL
21 tháng 11 2021 lúc 22:20

\(\dfrac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}=\dfrac{y\left(x^2+2xy+y^2\right)}{2x^2+2xy-xy-y^2}=\dfrac{y\left(x+y\right)^2}{2x\left(x+y\right)-y\left(x+y\right)}\)

\(=\dfrac{y\left(x+y\right)^2}{\left(2x-y\right)\left(x+y\right)}=\dfrac{y\left(x+y\right)}{2x-y}\)

Bình luận (0)
TP
Xem chi tiết
H24
17 tháng 9 2017 lúc 14:40

b) \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=\left(2x+y\right)\left(4x^2-2xy+y^2\right)+\left(2x+y\right)\left(4x^2+2xy+y^2\right)\)

\(=\left(2x+y\right)\left(4x^2-2xy+y^2+4x^2+2xy+y^2\right)\)

\(=\left(2x+y\right)\left(8x^2+2y^2\right)\)

\(=\left(2x+y\right)\left(4x+y\right).2xy\)

Bình luận (0)
QL
Xem chi tiết
HM
20 tháng 9 2023 lúc 23:24

a)      Cách 1:

\(6(y - x) - 2(x - y)\)

\( = 6y - 6x - 2x + 2y\)

\( = 8y - 8x\)

Cách 2:

\(6(y - x) - 2(x - y)\\= 6(y-x)+2(y-x)\\=(6+2).(y-x)\\=8.(y-x)\\=8y-8x\)

b)      \(3{x^2} + x - 4x - 5{x^2}\)

\( = (3{x^2} - 5{x^2}) + (x - 4x)\)

\( =  - 2{x^2} - 3x\)

Bình luận (0)