Những câu hỏi liên quan
HY
Xem chi tiết
H24
16 tháng 12 2020 lúc 18:58

a) Để điểm A(m;2m+1) thuộc đồ thị hàm số (1) thì:

2m+1=3m+5 <=> m=-4

b) Ta có:

\(f\left(\dfrac{-1}{2}\right)+f\left(3\right)=3.\dfrac{-1}{2}+5+3.3+5\\ =\dfrac{35}{2}\)

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 2 2018 lúc 2:54

Bình luận (0)
CM
Xem chi tiết
NT
23 tháng 12 2023 lúc 21:49

Câu 5:

a: Khi m=3 thì \(f\left(x\right)=\left(2\cdot3+1\right)x-3=7x-3\)

\(f\left(-3\right)=7\cdot\left(-3\right)-3=-21-3=-24\)

\(f\left(0\right)=7\cdot0-3=-3\)

b: Thay x=2 và y=3 vào f(x)=(2m+1)x-3, ta được:

\(2\left(2m+1\right)-3=3\)

=>2(2m+1)=6

=>2m+1=3

=>2m=2

=>m=1

c: Thay m=1 vào hàm số, ta được:

\(y=\left(2\cdot1+1\right)x-3=3x-3\)

*Vẽ đồ thị

loading...

d: Để hàm số y=(2m+1)x-3 là hàm số bậc nhất thì \(2m+1\ne0\)

=>\(2m\ne-1\)

=>\(m\ne-\dfrac{1}{2}\)

e: Để đồ thị hàm số y=(2m+1)x-3 song song với đường thẳng y=5x+1 thì \(\left\{{}\begin{matrix}2m+1=5\\-3\ne1\end{matrix}\right.\)

=>2m+1=5

=>2m=4

=>m=2

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 9 2018 lúc 4:51

Bình luận (0)
H24
Xem chi tiết
MY
29 tháng 1 2022 lúc 10:42

\(1.x^2+\dfrac{1}{x^2}-2m\left(x+\dfrac{1}{x}\right)+1+2m=0\left(1\right)\)\(đặt:x^2+\dfrac{1}{x^2}=t\)

\(x>0\Rightarrow t\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)

\(x< 0\Rightarrow-t=-x^2+\dfrac{1}{\left(-x^2\right)}\ge2\Rightarrow t\le-2\)

\(\Rightarrow t\in(-\infty;-2]\cup[2;+\infty)\left(2\right)\)

\(\Rightarrow\left(1\right)\Leftrightarrow t^2-2mt+2m-1=0\)

\(\Leftrightarrow\left(t-1\right)\left(t-2m+1\right)=0\Leftrightarrow\left[{}\begin{matrix}t=1\notin\left(2\right)\\t=2m-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2m-1\le-2\\2m-1\ge2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m\le-\dfrac{1}{2}\\m\ge\dfrac{3}{4}\end{matrix}\right.\)

\(2.\)  \(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\left(1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}f\left(\left|x\right|\right)=-1\\f\left(\left|x\right|\right)=3-m\end{matrix}\right.\)

\(dựa\) \(vào\) \(đồ\) \(thị\) \(f\left(\left|x\right|\right)\) \(\Rightarrow f\left(\left|x\right|\right)=-1\) \(có\) \(2nghiem\) \(pb\)

\(\left(1\right)có\) \(6\) \(ngo\) \(pb\Leftrightarrow\left\{{}\begin{matrix}-1< 3-m< 3\\3-m\ne-1\\\end{matrix}\right.\)\(\Leftrightarrow0< m< 4\)

\(\Rightarrow m=\left\{1;2;3\right\}\)

 

 

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 5 2018 lúc 2:19

Chọn A.

Theo đồ thị ta có: f'(x) > 0 

Ta có: 

Cho y' = 0

Để hàm số có 3 điểm cực trị thì phương trình y' = 0 phải có 3 nghiệm bội lẻ

Ta thấy x = 0 là một nghiệm bội lẻ

Dựa vào đồ thị của y = f'(x) ta thấy x = 1 là nghiệm bội lẻ (không đổi dấu), do đó ta không xét trường hợp 

Suy ra để hàm số có 3 điểm cực trị thì

TH1:   x 2 =  2m có 2 nghiệm phân biệt khác 0 và x 2  = 2m + 3 vô nghiệm hoặc có nghiệm kép bằng 0 

TH2.  x 2 = 2m + 3 có 2 nghiệm phân biệt khác 0 và  x 2 = 2m vô nghiệm hoặc có nghiệm kép bằng 0 

Vậy hàm số của 3 điểm cực trị khi 

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 9 2017 lúc 17:02

Bình luận (0)
NB
Xem chi tiết
NT
7 tháng 10 2021 lúc 23:38

a: Để hàm số đồng biến thì m-3>0

hay m>3

b: Thay x=-1 và y=1 vào (d), ta được:

-m+3+m-2=1

hay 1=1(đúng)

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 3 2018 lúc 5:42

Đáp án D.

y = -x3 + (2m – 1)x2 – (2 – m)x – 2

TXĐ: D = R

y' = -3x2 + 2(2m – 1) – 2 + m

Đồ thị hàm số có cực đại và cực tiểu <=> Pt y’ = 0 có hai nghiệm phân biệt

<=>  Δ’ = (2m – 1)2 + 3(-2 + m) > 0 <=> 4m2 – m – 5 > 0 <=> ∈ (-∞; -1) ∪ (5/4; +∞)

Bình luận (0)
HN
Xem chi tiết