Những câu hỏi liên quan
NM
Xem chi tiết
NL
25 tháng 10 2021 lúc 8:53

Để ĐTHS cắt cả 2 trục tọa độ \(\Rightarrow m\ne0\)

Khi đó ta có: giao điểm với trục hoành: \(mx+2=0\Rightarrow x=-\dfrac{2}{m}\)

Giao điểm với trục tung: \(y=m.0+2=2\)

a. \(A\left(-\dfrac{2}{m};0\right)\Rightarrow OA=\left|x_A\right|=\left|\dfrac{2}{m}\right|\)

\(B\left(0;2\right)\Rightarrow OB=\left|y_B\right|=2\)

\(OA=OB\Rightarrow\left|\dfrac{2}{m}\right|=2\Rightarrow m=\pm1\)

b. \(C\left(-\dfrac{2}{m};0\right);D\left(0;2\right)\Rightarrow\left\{{}\begin{matrix}OC=\left|\dfrac{2}{m}\right|\\OD=2\end{matrix}\right.\)

\(tanC=\dfrac{OD}{OC}=\left|m\right|=2\Rightarrow m=\pm2\)

Bình luận (0)
DV
Xem chi tiết
UT

Để tìm m để đồ thị hàm số cắt hai trục Ox và Oy tại A và B sao cho chu vi tam giác OAB là 3 + căn 5, ta cần xác định tọa độ của A và B.

Điểm A nằm trên trục Ox, nên tọa độ của A là (x_A, 0). Thay vào phương trình hàm số y = mx + 2, ta có:

0 = mx_A + 2
=> mx_A = -2
=> x_A = -2/m

Điểm B nằm trên trục Oy, nên tọa độ của B là (0, y_B). Thay vào phương trình hàm số y = mx + 2, ta có:

y_B = m*0 + 2
=> y_B = 2

Chu vi tam giác OAB được tính bằng công thức chu vi tam giác:

chu_vi = AB + OA + OB

Với OA = x_A và OB = y_B, ta có:

chu_vi = AB + x_A + y_B

chu_vi = AB + (-2/m) + 2

chu_vi = AB - (2/m) + 2

Theo đề bài, chu vi tam giác OAB là 3 + căn 5, nên ta có:

3 + căn 5 = AB - (2/m) + 2

căn 5 = AB - (2/m) + 1

AB = căn 5 + (2/m) - 1

Ta đã có tọa độ của A và B, và chu vi tam giác OAB. Giờ ta sẽ tính độ dài AB:

AB = căn((x_A - 0)^2 + (y_B - 0)^2)

AB = căn((-2/m)^2 + 2^2)

AB = căn(4/m^2 + 4)

AB = căn(4(1/m^2 + 1))

AB = 2căn(1/m^2 + 1)

So sánh với công thức đã tính được trước đó:

AB = căn 5 + (2/m) - 1

Ta có:

2căn(1/m^2 + 1) = căn 5 + (2/m) - 1

Bình phương cả hai vế của phương trình:

4(1/m^2 + 1) = 5 + 4/m^2 + 1 - 4/m

4/m^2 + 4 = 6 + 4/m^2 - 4/m

8/m^2 = 2 - 4/m

Nhân cả hai vế của phương trình cho m^2:

8 = 2m^2 - 4

2m^2 = 12

m^2 = 6

m = ±√6

Vậy, để đồ thị hàm số cắt hai trục Ox và Oy tại A và B sao cho chu vi tam giác OAB là 3 + căn 5, ta có hai giá trị của m: √6 và -√6.

Bình luận (1)
LM
Xem chi tiết
NT
29 tháng 12 2023 lúc 22:04

a: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(m+1\right)x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x\left(m+1\right)=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\x=-\dfrac{3}{m+1}\end{matrix}\right.\)

vậy: \(A\left(-\dfrac{3}{m+1};0\right)\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\left(m+1\right)\cdot x+3=0\left(m+1\right)+3=3\end{matrix}\right.\)

Vậy: B(0;3)

\(OA=\sqrt{\left(-\dfrac{3}{m+1}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{3}{m+1}\right)^2}=\left|\dfrac{3}{m+1}\right|\)

\(OB=\sqrt{\left(0-0\right)^2+\left(3-0\right)^2}=\sqrt{0+9}=3\)

Vì Ox\(\perp\)Oy

nên OA\(\perp\)OB

=>ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot3\cdot\dfrac{3}{\left|m+1\right|}=\dfrac{9}{2\left|m+1\right|}\)

Để \(S_{AOB}=9\) thì \(\dfrac{9}{2\left|m+1\right|}=9\)

=>2|m+1|=1

=>|m+1|=1/2

=>\(\left[{}\begin{matrix}m+1=\dfrac{1}{2}\\m+1=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{1}{2}\\m=-\dfrac{3}{2}\end{matrix}\right.\)

Bình luận (0)
NT
Xem chi tiết
NT
10 tháng 10 2023 lúc 21:03

a) \(y=\left(1-m\right)x+m+2\left(d\right)\)

\(y=2x-1\left(d'\right)\)

\(\left(d\right)//\left(d'\right)\Leftrightarrow\left\{{}\begin{matrix}1-m=2\\m+2\ne-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne-3\end{matrix}\right.\)

\(\Leftrightarrow m=-1\)

Vậy với \(m=-1\) để \(\left(d\right)//\left(d'\right)\)

b) \(\left(d\right)\cap\left(Ox\right)=A\left(x;0\right)\)

\(\Leftrightarrow\left(1-m\right)x+m+2=0\)

\(\Leftrightarrow x=\dfrac{m-1}{m+2}\)

\(\Rightarrow A\left(\dfrac{m-1}{m+2};0\right)\)

\(\Rightarrow OA=\sqrt[]{\left(\dfrac{m-1}{m+2}\right)^2}=\left|\dfrac{m-1}{m+2}\right|\)

\(\left(d\right)\cap\left(Oy\right)=B\left(0;y\right)\)

\(\Leftrightarrow\left(1-m\right).0+m+2=y\)

\(\Leftrightarrow y=m+2\)

\(\Rightarrow B\left(0;m+2\right)\)

\(\Rightarrow OB=\sqrt[]{\left(m+2\right)^2}=\left|m+2\right|\)

Để \(\Delta OAB\) là \(\Delta\) vuông cân khi và chỉ khi

\(\left|\dfrac{m-1}{m+2}\right|=\left|m+2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{m-1}{m+2}=m+2\\\dfrac{m-1}{m+2}=-\left(m+2\right)\end{matrix}\right.\) \(\left(m\ne-2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(m+2\right)^2=m-1\\\left(m+2\right)^2=1-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2+2m+4=m-1\\m^2+2m+4=1-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2+m+5=0\left(1\right)\\m^2+3m+3=0\left(2\right)\end{matrix}\right.\)

Giải \(pt\left(1\right):\Delta=1-20=-19< 0\)

\(\Rightarrow\left(1\right)\) vô nghiệm

Giải \(pt\left(2\right):\Delta=9-12=-3< 0\)

\(\Rightarrow\left(2\right)\) vô nghiệm

Vậy không có giá trị nào của \(m\) thỏa mãn đề bài

Bình luận (0)
HC
Xem chi tiết
LM
Xem chi tiết
NT
18 tháng 11 2023 lúc 19:28

Bài 1:

a: Để hàm số y=(1-m)x+m+2 đồng biến trên R thì 1-m>0

=>-m>-1

=>m<1

b: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(1-m\right)x+m+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\left(1-m\right)x=-m-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{m+2}{m-1}\\y=0\end{matrix}\right.\Leftrightarrow OA=\left|\dfrac{m+2}{m-1}\right|\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\left(1-m\right)x+m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\left(1-m\right)\cdot0+m+2=m+2\end{matrix}\right.\)

=>\(OB=\left|m+2\right|\)

Để ΔOAB cân tại O thì OA=OB

=>\(\dfrac{\left|m+2\right|}{\left|m-1\right|}=\left|m+2\right|\)

=>\(\left|m+2\right|\left(\dfrac{1}{\left|m-1\right|}-1\right)=0\)

=>\(\left[{}\begin{matrix}m+2=0\\\dfrac{1}{\left|m-1\right|}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-2\\m-1=1\\m-1=-1\end{matrix}\right.\)

=>\(m\in\left\{0;2;-2\right\}\)

Bình luận (0)
2S
Xem chi tiết
NT
20 tháng 11 2023 lúc 20:40

1: Bạn bổ sung đề bài đi bạn

2: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(2m-1\right)x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\left(2m-1\right)x=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{4}{2m-1}\\y=0\end{matrix}\right.\)

=>\(OA=\sqrt{\left(\dfrac{4}{2m-1}-0\right)^2+\left(0-0\right)^2}=\dfrac{4}{\left|2m-1\right|}\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\left(2m-1\right)x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\left(2m-1\right)\cdot0-4=-4\end{matrix}\right.\)

=>OB=4

Để ΔOAB cân tại O thì OA=OB

=>\(\dfrac{4}{\left|2m-1\right|}=4\)

=>\(\dfrac{1}{\left|2m-1\right|}=1\)

=>\(\left|2m-1\right|=1\)

=>\(\left[{}\begin{matrix}2m-1=1\\2m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=2\\2m=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=0\end{matrix}\right.\)

Bình luận (1)
H24
Xem chi tiết
NT
13 tháng 9 2023 lúc 22:09

Tọa độ A là;

\(\left\{{}\begin{matrix}y=0\\\left(m+1\right)x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{m+1}\\y=0\end{matrix}\right.\Leftrightarrow OA=\dfrac{3}{\left|m+1\right|}\)

Tọa độ B là:

x=0 và y=(m+1)*0+3=3

=>OB=3

SOAB=9

=>1/2*OA*OB=9

=>1/2*9/|m+1|=9

=>1/2*1/|m+1|=1

=>1/|m+1|=2

=>|m+1|=1/2

=>m+1=1/2 hoặc m+1=-1/2

=>m=-1/2 hoặc m=-3/2

Bình luận (0)
NJ
Xem chi tiết
HT
29 tháng 5 2017 lúc 23:10

câu a: khi m= 2 => y=2x+2

y y=2x+2 x -1 2 0

với x=0=> y =2

với y=0 =>x -1

câu b : y = xm+2 cắt ox,oy lần lượt tại A,B mà tam giác OAB cân tại O nên OB=OA \(OA^2=OB^2\)

Y X 0 A B

Với x=0=>y=2 => A(0,2) => \(0A=\sqrt{0^2+2^2}=2\)

Với y=0=> x= \(x=\frac{-2}{m}\)nên \(B\left(\frac{-2}{m},0\right)\) ,\(OB=\sqrt{\frac{4}{m^2}+0^2}=\sqrt{\frac{4}{m^2}}\)

theo giả thiết OA=OB nên \(\sqrt{\frac{4}{m^2}}=\sqrt{4}\Leftrightarrow m^2=1\Leftrightarrow\orbr{\begin{cases}m=1\\m=-1\end{cases}}\)

Bình luận (0)