Những câu hỏi liên quan
H24
Xem chi tiết
KL
23 tháng 1 2024 lúc 17:46

a) x : 2 = y : (-5)

⇒ x/2 = y/(-5)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/2 = y/(-5) = (x - y)/(2 + 5) = 14/7 = 

x/2 = 2 ⇒ x = 2.2 = 4

y/(-5) = 2 ⇒ y = 2.(-5) = -10

Vậy x = 4; y = -10

b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/2 = y/5 = z/6 = (x - y + z)/(2 - 5 + 6) = 24/3 = 8

x/2 = 8 ⇒ x = 8.2 = 16

y/5 = 9 ⇒ y = 8.5 = 40

z/6 = 8 ⇒ z = 8.6 = 48

Vậy x = 16; y = 40; z = 48

c) 2x = 3y = 6z

⇒ x/(1/2) = y/(1/3) = z/(1/6)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/(1/2) = y/(1/3) = z/(1/6) = (x + y - z)/(1/2 + 1/3 - 1/6) = 8/(2/3) = 12

2x = 12 ⇒ x = 12 : 2 = 6

3y = 12 ⇒ y = 12 : 3 = 4

6z = 12 ⇒ z = 12 : 6 = 2

Vậy x = 6; y = 4; z = 2

Bình luận (0)
KL
23 tháng 1 2024 lúc 17:56

d) x/3 = y/2 = z/(-3)

⇒ 2x/6 = 3y/6 = 4z/(-12)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

2x/6 = 3y/6 = 4z/(-12) = (2x - 3y + 4z)/(6 - 6 - 12) = 48/(-12) = -4

x/3 = -4 ⇒ x = -4.3 = -12

y/2 = -4 ⇒ y = -4.2 = -8

z/(-3) = -4 ⇒ z = -4.(-3) = 12

Vậy x = -12; y = -8; z = 12

e) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/5 = y/6 = z/7 = (x - y)/(5 - 6) = 36/(-1) = -36

x/5 = -36 ⇒ x = -36.5 = -180

y/6 = -36 ⇒ y = -36.6 = -216

z/7 = -36 ⇒ z = -36.7 = -252

Vậy x = -180; y = -216; z = -252

f) x/12 = y/13

⇒ 3x/36 = 2y/26

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

3x/36 = 2y/26 = (3x + 2y)/(36 + 26) = 52/62 = 26/31

x/12 = 26/31 ⇒ x = 26/31 . 12 = 312/31

y/13 = 26/31 ⇒ y = 26/31 . 13 = 338/31

z/15 = 26/31 ⇒  z = 26/31 . 15 = 390/31

Vậy x = 312/31; y = 338/31; z = 390/31

Bình luận (1)
Xem chi tiết
NT
3 tháng 7 2021 lúc 13:03

a) Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)

nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{2x}{3}=12\\\dfrac{3y}{4}=12\\\dfrac{4z}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\3y=48\\4z=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=20\end{matrix}\right.\)

Vậy: (x,y,z)=(18;16;20)

b) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k\\y=3k\end{matrix}\right.\)

Ta có: \(x^2-y^2=4\)

\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)

\(\Leftrightarrow16k^2=4\)

\(\Leftrightarrow k\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

Trường hợp 1: \(k=\dfrac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{1}{2}=\dfrac{5}{2}\\y=3k=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)

Trường hợp 2: \(k=-\dfrac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{-1}{2}=\dfrac{-5}{2}\\y=3k=3\cdot\dfrac{-1}{2}=\dfrac{-3}{2}\end{matrix}\right.\)

Vậy: \(\left(x,y\right)\in\left\{\left(\dfrac{5}{2};\dfrac{3}{2}\right);\left(-\dfrac{5}{2};-\dfrac{3}{2}\right)\right\}\)

 

Bình luận (1)
H24
3 tháng 7 2021 lúc 13:18

a)

 

Theo tính chất của dãy tỉ số bằng nhau, ta có : 

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Suy ra : 

\(x=\dfrac{12.3}{2}=18\\ y=\dfrac{12.4}{3}=16\\ z=\dfrac{12.5}{4}=15\)

b)

\(x=\dfrac{y}{3}.5=\dfrac{5y}{3}\\ x^2-y^2=4\\ \Leftrightarrow\left(\dfrac{5y}{3}\right)^2-y^2=4\\ \Leftrightarrow\dfrac{16y^2}{9}=4\Leftrightarrow y=\pm\dfrac{3}{2} \)

Với $y = \dfrac{3}{2}$ thì $x = \dfrac{5}{2}$

Với $y = \dfrac{-3}{2}$ thì $x = \dfrac{-5}{2}$

c)

\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{1}{2}\)

Suy ra : 

\(2x=y+z+1\Leftrightarrow y+z=2x-1\)

Mặt khác : 

\(x+y+z=\dfrac{1}{2}\Leftrightarrow x+2x-1=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)

\(2y=x+z+1=z+\dfrac{3}{2}\)

Mà \(y+z=0\Leftrightarrow z=-y\)

nên suy ra:  \(y=\dfrac{1}{2};z=-\dfrac{1}{2}\)

Bình luận (1)
NN
Xem chi tiết
BH
24 tháng 7 2019 lúc 15:55

\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)

\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)

Bình luận (0)
BH
24 tháng 7 2019 lúc 15:59

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}\)

áp dụng tính chất dãy tỉ số bằng nhau  ta có

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1+-1-2}=\frac{48}{-2}=-24\)

\(\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=-12\end{cases}}\)

Bình luận (0)
BH
24 tháng 7 2019 lúc 16:05

\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{x+y+z-6}{12}=\frac{24}{12}=2\)

\(\Leftrightarrow\hept{\begin{cases}x=7\\y=10\\z=13\end{cases}}\)

Bình luận (0)
NN
Xem chi tiết
EC
24 tháng 7 2019 lúc 8:36

+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
NL
20 tháng 1 2024 lúc 6:17

Áp dụng t/c dãy tỉ số bằng nhau:

a.

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x}{6}=\dfrac{4y}{20}=\dfrac{2x+4y}{6+20}=\dfrac{28}{26}=\dfrac{14}{13}\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.\dfrac{14}{13}=\dfrac{52}{13}\\y=5.\dfrac{14}{13}=\dfrac{70}{13}\end{matrix}\right.\)

(Em có nhầm đề 26 thành 28 ko nhỉ, số xấu quá)

b.

\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{3x}{15}=\dfrac{-2y}{-8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=4.2=20\end{matrix}\right.\)

c.

\(\dfrac{x}{-3}=\dfrac{y}{-7}=\dfrac{2x}{-6}=\dfrac{4y}{-28}=\dfrac{2x+4y}{-6-28}=\dfrac{68}{-34}=-2\)

\(\Rightarrow\left\{{}\begin{matrix}x=-3.\left(-2\right)=6\\y=-7.\left(-2\right)=14\end{matrix}\right.\)

d.

\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}=\dfrac{4x}{8}=\dfrac{-3y}{9}=\dfrac{-2z}{-8}=\dfrac{4x-3y-2z}{8+9-8}=\dfrac{16}{9}\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.\dfrac{16}{9}=\dfrac{32}{9}\\y=-3.\dfrac{16}{9}=-\dfrac{48}{9}\\z=4.\dfrac{16}{9}=\dfrac{64}{9}\end{matrix}\right.\)

Bình luận (0)
BA
Xem chi tiết
LV
Xem chi tiết
H24
Xem chi tiết
H24
1 tháng 10 2017 lúc 14:07

\(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}=\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{2x}{10.2}=\frac{3y}{15.3}=\frac{z}{21}=\frac{2x}{20}=\frac{3y}{45}=\frac{z}{21}=\frac{2x+3y+z}{20+45+21}=\frac{172}{86}=2\)

\(\frac{x}{10}=2\Rightarrow x=2.10=20\)

\(\frac{y}{15}=2\Rightarrow y=2.15=30\)

\(\frac{z}{21}=2\Rightarrow z=2.21=42\)

Vậy x=20 ; y=30 và z=42

Bình luận (0)
ZZ
2 tháng 9 2018 lúc 14:18

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

Bình luận (0)