Những câu hỏi liên quan
H24
Xem chi tiết
NN
11 tháng 7 2023 lúc 21:41

a)

\(x^2-4\sqrt{15}x+19=0\\ < =>x^2-4\sqrt{15}x+60-41=0\\ < =>\left(x-2\sqrt{15}\right)^2-41=0\\ < =>\left(x-2\sqrt{15}-\sqrt{41}\right)\left(x-2\sqrt{15}+\sqrt{41}\right)=0\\ < =>\left[{}\begin{matrix}x-2\sqrt{15}-\sqrt{41}=0\\x-2\sqrt{15}+\sqrt{41}=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=2\sqrt{15}+\sqrt{41}\\x=2\sqrt{15}-\sqrt{41}\end{matrix}\right.\)

b)

\(4x^2+4\sqrt{5}x+5=0\\ < =>\left(2x+\sqrt{5}\right)^2=0\\ < =>2x+\sqrt{5}=0\\ < =>2x=-\sqrt{5}\\ < =>-\dfrac{\sqrt{5}}{2}\)

Bình luận (0)
NT
11 tháng 7 2023 lúc 21:35

a: Δ=(4căn 15)^2-4*1*19=164>0

Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x=\dfrac{4\sqrt{5}-2\sqrt{41}}{2}=2\sqrt{5}-\sqrt{41}\\x_2=2\sqrt{5}+\sqrt{41}\end{matrix}\right.\)

b: \(\Leftrightarrow\left(2x\right)^2+2\cdot2x\cdot\sqrt{5}+5=0\)

=>(2x+căn 5)^2=0

=>2x+căn 5=0

=>x=-1/2*căn 5

Bình luận (0)
NA
Xem chi tiết
NL
22 tháng 10 2021 lúc 21:39

Đặt \(\sqrt{x^2-2x+5}=t>0\)

\(\Rightarrow x^2-2x=t^2-5\)

Phương trình trở thành:

\(t=t^2-5-1\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-2x+5}=3\)

\(\Rightarrow x^2-2x+5=9\)

\(\Rightarrow x^2-2x-4=0\)

\(\Rightarrow...\)

Bình luận (1)
LK
Xem chi tiết
DZ
Xem chi tiết
NT
26 tháng 4 2022 lúc 20:19

????  

xin lỗi nha ! 

mình mới học lớp 3 

mà bài này khó nắm 

Bình luận (0)
NQ
26 tháng 4 2022 lúc 20:21

ko bt thì ko nhắn nha

Bình luận (0)
CL
26 tháng 4 2022 lúc 22:03

a.A=\(\sqrt{12}-\sqrt{27}+\sqrt{4+2\sqrt{3}}\)\(=2\sqrt{3}-3\sqrt{3}+\sqrt{\left(\sqrt{3}+1\right)^2}\)               \(=-\sqrt{3}+\sqrt{3}+1\)                                                                                  =1                                                                                                        b. \(x^2-2x-4=0\)                                                                                   Δ= \(\left(-2\right)^2-4\times1\times-4=20>0\)                                             \(\Rightarrow\)   phương trình có 2 nghiệm pb                                                \(x1=\dfrac{2+\sqrt{20}}{2}=1+\sqrt{5}\)     \(x2=\dfrac{2-\sqrt{20}}{2}=1-\sqrt{5}\)                      c. \(\left\{{}\begin{matrix}2x-y=5\\x+3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=5\\2x+6y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7y=7\\2x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x+1=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
LD
21 tháng 5 2016 lúc 16:23

Dựa vào đây mà làm nhé : Câu hỏi của nhi anny - Toán lớp 9 - Học toán với OnlineMath

Bình luận (0)
HP
21 tháng 5 2016 lúc 16:25

Thiên Ngoại Phi Tiên:liên quan ak?

Bình luận (0)
TN
21 tháng 5 2016 lúc 16:26

Hoàng Phúc chuẩn 2 bài ko có j giống nhau

Bình luận (0)
NN
Xem chi tiết
AT
29 tháng 5 2021 lúc 9:02

1.\(A=\left(\sqrt{3}+1\right)\sqrt{\dfrac{14-6\sqrt{3}}{5+\sqrt{3}}}=\left(\sqrt{3}+1\right)\sqrt{\dfrac{\left(14-6\sqrt{3}\right)\left(5-\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}}\)

\(=\left(\sqrt{3}+1\right)\sqrt{\dfrac{44\left(2-\sqrt{3}\right)}{22}}=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}=\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=2\)

Bình luận (0)
AT
29 tháng 5 2021 lúc 9:11

2.1.a) \(x^2=\left(x-1\right)\left(3x-2\right)\Leftrightarrow x^2=3x^2-5x+2\Leftrightarrow2x^2-5x+2=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{2}\end{matrix}\right.\)

b) \(9x^4+5x^2-4=0\Leftrightarrow9x^4+9x^2-4x^2-4=0\)

\(\Leftrightarrow9x^2\left(x^2+1\right)-4\left(x^2+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(9x^2-4\right)=0\)

mà \(x^2+1>0\Rightarrow9x^2=4\Rightarrow x^2=\dfrac{4}{9}\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

2) Gọi số xe lúc đầu của đội là a(xe) \(\left(a\in N,a>0\right)\)

Theo đề,ta có: \(\left(a-2\right)\left(\dfrac{120}{a}+3\right)=120\Leftrightarrow120+3a-\dfrac{240}{a}-6=120\)

\(\Leftrightarrow\dfrac{3a^2-6a-240}{a}=0\Rightarrow3a^2-6a-240=0\Rightarrow a^2-2a-80=0\)

\(\Leftrightarrow\left(a+8\right)\left(a-10\right)=0\) mà \(a>0\Rightarrow a=10\)

 

Bình luận (0)
VX
29 tháng 5 2021 lúc 9:29

Bài 1undefinedBài 2

2.1

undefinedBài 4undefinedundefinedBạn tham khảo nha. Chúc bạn học tốt

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 8 2018 lúc 10:50

(x2 + 2x – 5)2 = (x2 – x + 5)2

⇔ (x2 + 2x – 5)2 – (x2 – x + 5)2 = 0

⇔ [(x2 + 2x – 5) – (x2 – x + 5)].[(x2 + 2x – 5) + (x2 – x + 5)] = 0

⇔ (3x – 10)(2x2 + x ) = 0

⇔ (3x-10).x.(2x+1)=0

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (1): 3x – 10 = 0 ⇔ Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (2):

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 7 2017 lúc 2:48

x 2  – 5 = (2x -  5  )(x +  5  )

⇔ (x +  5  )(x -  5 ) = (2x -  5  )(x +  5  )

⇔ (x +  5  )(x -  5  ) – (2x -  5 )(x +  5  ) = 0

⇔ (x +  5  )[(x -  5  ) – (2x -  5  )] = 0

⇔ (x +  5 )(- x) = 0 ⇔ x + 5 = 0 hoặc – x = 0

x +  5  = 0 ⇔ x = -  5

x = 0 ⇔ x = 0

Vậy phương trình có nghiệm x = -  5  hoặc x = 0.

Bình luận (0)
NP
Xem chi tiết
NM
22 tháng 10 2021 lúc 23:16

\(ĐK:x\ge0\\ PT\Leftrightarrow\left(\sqrt{8+\sqrt{x}}-3\right)+\left(\sqrt{5-\sqrt{x}}-2\right)=0\\ \Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+3}+\dfrac{-\sqrt{x}+1}{\sqrt{5-\sqrt{x}}+2}=0\\ \Leftrightarrow\left(\sqrt{x}-1\right)\left(\dfrac{1}{\sqrt{8+\sqrt{x}}+3}-\dfrac{1}{\sqrt{5-\sqrt{x}}+2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\\dfrac{1}{\sqrt{8+\sqrt{x}}+3}-\dfrac{1}{\sqrt{5-\sqrt{x}}+2}=0\left(vô.n_0,\forall x\ge0\right)\end{matrix}\right.\)

Vậy PT có nghiệm duy nhất \(x=1\)

Bình luận (0)
TH
Xem chi tiết
H24
22 tháng 5 2021 lúc 22:58

Ta có: \(\Delta=4m^2+4m-11\)

Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow4m^2+4m-11>0\)

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+3\\x_1x_2=2m+5\end{matrix}\right.\)

Để phương trình có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2+4m-11>0\\2m+3>0\\2m+5>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< \dfrac{-1-2\sqrt{3}}{2}\\m>\dfrac{-1+2\sqrt{3}}{2}\end{matrix}\right.\\m>-\dfrac{3}{2}\\m>-\dfrac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow m>\dfrac{-1+2\sqrt{3}}{2}\)

 Mặt khác: \(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{4}{3}\)

\(\Rightarrow\dfrac{x_1+x_2+2\sqrt{x_1x_2}}{x_1x_2}=\dfrac{16}{9}\) \(\Rightarrow\dfrac{2m+3+2\sqrt{2m+5}}{2m+5}=\dfrac{16}{9}\)

\(\Rightarrow18m+27+18\sqrt{2m+5}=32m+80\)

\(\Leftrightarrow14m-53=18\sqrt{2m+5}\)

\(\Rightarrow\) ...

 

Bình luận (0)
TH
22 tháng 5 2021 lúc 22:36

giúp mình với ạ ! Mình cảm ơn ạ 

Bình luận (0)