Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
KH
Xem chi tiết
ND
Xem chi tiết
NT
24 tháng 5 2023 lúc 8:01

=>y=(m+1)x-m-1 và x+(m^2-1)x-m^2+1=2

=>x=2-1+m^2/m^2 và y=(m+1)x-m-1

=>x=(m^2+1)/m^2 và y=(m^3+m^2+m+1-m^3-m^2)/m^2=(m+1)/m^2

x+y=(m^2+m+2)/m^2

Để x+y min thì m^2+m+2 min

=>m^2+m+1/4+7/4 min

=>(m+1/2)^2+7/4min

=>m=-1/2

Bình luận (0)
NM
Xem chi tiết
NM
5 tháng 1 2022 lúc 15:42

PT có 2 nghiệm \(\Leftrightarrow\Delta=\left(4m+1\right)^2-8\left(m-4\right)\ge0\)

\(\Leftrightarrow16m^2+33\ge0\left(\text{luôn đúng}\right)\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=4m+1\\x_1x_2=-2\left(m-4\right)\end{matrix}\right.\)

\(B=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(4m+1\right)^2+8\left(m-4\right)\\ B=16m^2+16m-31=4\left(4m^2+4m+1\right)-35=4\left(2m+1\right)^2-35\ge-35\)

Vậy \(B_{min}=-35\Leftrightarrow m=-\dfrac{1}{2}\)

Bình luận (2)
NQ
Xem chi tiết
LF
31 tháng 3 2017 lúc 17:15

\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

\(=\left|x-2013\right|+\left|x-2014\right|+\left|2015-x\right|\)

\(\ge x-2013+0+2015-x=2\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-2013\ge0\\x-2014=0\\x-2015\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge2013\\x=2014\\x\le2015\end{matrix}\right.\)\(\Rightarrow x=2014\)

Vậy với \(x=2014\) thì \(A_{MIN}=2\)

Bình luận (4)
AK
31 tháng 3 2017 lúc 18:06

Ta có :

A=|x-2013|+|x-2014|+|x-2015|

<=> A=|2013-x|+|x-2014|+|x-2015|

>hoặc =|2013-x+x+2015|+|x-2014

=|2|+|x-2015|=2+|x-2015|

=>GTNN của A =2 khi :

|x-2015|=0=>x-2015=0=>x=2015

Vậy GTNN của A=2 khi x=2015

Bình luận (2)
NR
Xem chi tiết
ND
24 tháng 3 2022 lúc 22:26

\(\Delta=4m^2+20m+25-8m-4=4m^2+12m+21=\left(2m+3\right)^2+12>0\)

 với mọi m => pt có 2 nghiệm phân biệt x1 và x2

theo Viet (điều kiện m > -1/2)

\(\left\{{}\begin{matrix}x1+x2=2m+5\\x1.x2=2m+1\end{matrix}\right.\)

\(p^2=x1-2\left|\sqrt{x1.x2}\right|+x2=2m+5-2\sqrt{2m+1}=\left(\sqrt{2m+1}-1\right)^2+3\ge3< =>p\ge\sqrt{3}\)

dấu bằng xảy ra khi \(\sqrt{2m+1}=1< =>m=0\left(tm\right)\)

Bình luận (0)
H24
Xem chi tiết
NL
19 tháng 1 2022 lúc 21:04

Đặt \(2\sqrt{x+1}+\sqrt{4-x}=t\Rightarrow t^2-4=3x+4+4\sqrt{-x^2+3x+4}\)

Ta có:

\(2\sqrt{x+1}+\sqrt{4-x}\le\sqrt{\left(4+1\right)\left(x+1+4-x\right)}=5\)

\(\sqrt{x+1}+\sqrt{x+1}+\sqrt{4-x}\ge\sqrt{x+1}+\sqrt{x+1+4-x}\ge\sqrt{5}\)

\(\Rightarrow\sqrt{5}\le t\le5\)

Phương trình trở thành:

\(t^2-4=mt\) \(\Leftrightarrow f\left(t\right)=t^2-mt-4=0\)

\(ac=-4< 0\Rightarrow pt\) luôn có 2 nghiệm trái dấu (nghĩa là đúng 1 nghiệm dương)

Vậy để pt có nghiệm thuộc \(\left[\sqrt{5};5\right]\Rightarrow x_1< \sqrt{5}\le x_2\le5\)

\(\Rightarrow f\left(\sqrt{5}\right).f\left(5\right)\le0\)

\(\Rightarrow\left(1-\sqrt{5}m\right)\left(21-5m\right)\le0\)

\(\Rightarrow\dfrac{\sqrt{5}}{5}\le m\le\dfrac{21}{5}\)

Bình luận (0)
NL
19 tháng 1 2022 lúc 21:09

2.

Chắc đề đúng là "tìm m để giá trị nhỏ nhất của hàm số đạt giá trị lớn nhất"

Hàm bậc 2 có \(a=2>0\Rightarrow y_{min}=-\dfrac{\Delta}{4a}=-\dfrac{9\left(m+1\right)^2-8\left(m^2+3m-2\right)}{8}=-\dfrac{m^2-6m+25}{8}\)

\(\Rightarrow y_{min}=-\dfrac{1}{8}\left(m-3\right)^2-2\le-2\)

Dấu "=" xảy ra khi \(m-3=0\Rightarrow m=3\)

Bình luận (0)
TT
Xem chi tiết
NL
14 tháng 4 2022 lúc 15:50

\(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3m+6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-2y=3-m\\4x+2y=6m+12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=3-m\\5x=5m+15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=m+3\\y=m\end{matrix}\right.\)

\(A=\left(m+3\right)^2+m^2=2m^2+6m+9=2\left(m+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(m+\dfrac{3}{2}=0\Rightarrow m=-\dfrac{3}{2}\)

Bình luận (0)
TN
Xem chi tiết