Đại số lớp 7

NQ

tìm GTNN của A=\(\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

LF
31 tháng 3 2017 lúc 17:15

\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

\(=\left|x-2013\right|+\left|x-2014\right|+\left|2015-x\right|\)

\(\ge x-2013+0+2015-x=2\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-2013\ge0\\x-2014=0\\x-2015\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge2013\\x=2014\\x\le2015\end{matrix}\right.\)\(\Rightarrow x=2014\)

Vậy với \(x=2014\) thì \(A_{MIN}=2\)

Bình luận (4)
AK
31 tháng 3 2017 lúc 18:06

Ta có :

A=|x-2013|+|x-2014|+|x-2015|

<=> A=|2013-x|+|x-2014|+|x-2015|

>hoặc =|2013-x+x+2015|+|x-2014

=|2|+|x-2015|=2+|x-2015|

=>GTNN của A =2 khi :

|x-2015|=0=>x-2015=0=>x=2015

Vậy GTNN của A=2 khi x=2015

Bình luận (2)

Các câu hỏi tương tự
HL
Xem chi tiết
VT
Xem chi tiết
NG
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
CK
Xem chi tiết
NT
Xem chi tiết
BT
Xem chi tiết
H24
Xem chi tiết