a, Tìm số tự nhiên n sao cho : \(2n+2017;n+2019\) đều là các số chính phương.
b, Cho a,b là các số dương thỏa mãn : \(\frac{1}{a}+\frac{1}{b}=\frac{1}{2019}\)
Chứng minh : \(\sqrt{a+b}=\sqrt{a-2019}+\sqrt{b-2019}\)
Tìm số tự nhiên n sao cho 2n+2017 và n+2019 đều là các số chính phương
a,Tìm các số tự nhiên x,y sao cho (2x +1)(y-5)=12
b/Tìm số tự nhiên n sao cho n + 5 chia hết cho n +1
c/Tìm số tự nhiên n sao cho 2n + 13 chia hết cho 2n +3
d/Tìm số tuwnhieen n sao cho 4n + 5 chia hết cho 2n +1
Tìm tất cả các số tự nhiên n sao cho \(2n+2017\)và \(n+2019\)là số chính phương
Tìm tất cả các số tự nhiên n sao cho \(2n+2017\)và \(n+2019\)đều là số chính phương
Có: 2n+2017=a^2 (1) (a,b ∈N)
n+2019=b^2 (2)
Từ (1)⇒ a lẻ ⇒ a=2k+1 (k∈N)
(1) trở thành 2n+2017=(2k+1)^2
⇔ n+1008=2k(k+1)
Vì k(k+1) là tích 2 số tự nhiên liên tiếp ⇒ k(k+1) chia hết cho 2
⇒ n+1008 chia hết cho 4 ⇒n chia hết cho 4 (vì 1008 chia hết cho 4)
Vì n chia hết cho 4 ⇒ b lẻ ⇒b=2h+1 (h∈N)
(2) trở thành n+2019=(2h+1)^2
⇔n+2018=4(h^2+h) (3)
Có: n chia hết cho 4, 2018 không chia hết cho 4
⇒ n+2018 không chia hết cho 4
mà 4(h^2+h) chia hết cho 4
Nên (3) vô lý
Vậy không tồn tại n thỏa mãn
1) Tìm số tự nhiên n sao cho 2n+5 chia hết cho 2n -1
2) Tìm số tự nhiên n sao cho 3.n+5 chia hết cho 3.n-1
3) Tìm số tự nhiên n sao cho n+5 chia hết cho n-1
Giải tóm tắt dễ hiểu nha mọi người. Cảm ơn !
1)2n+5-2n-1
=>4 chia hết cho 2n-1
ước của 4 là 1 2 4
2n-1=1=>n=.....
tiếp với 2 và 4 nhé
tìm số tự nhiên n sao cho a=n^4-2n^3+3n^2-2n là số chính phương
Câu hỏi của Trương Anh Tú - Toán lớp 6 - Học toán với OnlineMath
Nếu n=0,suy ra A=0(thỏa mãn)
Nếu n=1 suy rs A=0(thỏa mãn)
Nếu n>1,ta có
A=n.(n^3-2.n^2+3n-2)
A=n.[n.(n^2-2n+3)-2]
A=n.[n.(n-1)^2+2.(n-1)]
A=n.(n-1).[n.(n-1)+2]
Ta thấy:[n.(n-1)]^2<A<[n.(n-1)+1]^2 (tự chứng minh)
Suy ra A không phải là số chính phương với n>1
Vậy n={0;1}
a) Tìm số tự nhiên n sao cho 2n + 5 chia hết cho n + 2
Ta có:
2n + 5 = 2n + 4 + 1
= 2(n + 2) + 1
Để (2n + 5) ⋮ (n + 2) thì 1 ⋮ (n + 2)
⇒ n + 2 ∈ Ư(1) = {-1; 1}
⇒ n ∈ {-3; -1}
Mà n ∈ ℕ
⇒ Không tìm được n ∈ ℕ thỏa mãn đề bài
2n+5 chia hết cho n+2
=>\(2n+4+1⋮n+2\)
=>\(1⋮n+2\)
=>\(n+2\in\left\{1;-1\right\}\)
=>\(n\in\left\{-1;-3\right\}\)
mà n>=0
nên \(n\in\varnothing\)
a,Tìm các số tự nhiên x,ý sao cho(2x+1)(y-5)=12
b,Tìm số tự nhiên n sao cho 4n-5 chia hết cho 2n-1
a/Ta có : 2x+1 và y-5 là ước của 12
12=1.12=2.6=3.4
Vì 2x+1 lẻ => 2x+1 = 1 hoặc 2x+1=3
*2x+1=1 => x= 0 ; y-5 = 12 => x=0 ; y=12
*2x+1=3 => x=1; y-5=4 => x= 1; y= 9
Vậy (x,y) là: (0,17); (1,9)
b/ Ta có :
4n-5 = 2[2n-1] -3
Để 4n-5 chia hết cho 2n-1 => 3 chia hết cho 2n-1
=> 2n-1 = 1 hoặc 3
=> 2n = 2 hoặc 4
=> n= 1 hoặc 2
Vậy n= 1 hoặc 2
a, Vì (2x + 1)(y - 5) = 12
=. 2x + 1 \(\in\)Ư(12)
Vì x >= 0 => 2x >= 0 => 2x + 1 >=1
Mà 2x + 1 là số lẻ.
Ta có bảng sau:
2x + 1 | 1 | 3 |
2x | 0 | 2 |
x | 0 | 1 |
y - 5 | 12 | 4 |
y | 17 | 9 |
Vậy: (x; y) \(\in\){(0; 17); (1; 9)}
Hãy tìm số tự nhiên n sao cho A = n^4 - 2n^3 + 3n^2 - 2n là số chính phương
a, tìm các số tự nhiên sao cho 2n+5 chia hết cho n+3
b, tìm tất cả số tự nhiên a và b sao cho tích a x b = 246 và a < b