X1

a, Tìm số tự nhiên n sao cho : \(2n+2017;n+2019\) đều là các số chính phương.

b, Cho a,b là các số dương thỏa mãn :  \(\frac{1}{a}+\frac{1}{b}=\frac{1}{2019}\)

Chứng minh : \(\sqrt{a+b}=\sqrt{a-2019}+\sqrt{b-2019}\)

ZZ
2 tháng 11 2019 lúc 18:44

Đặt \(2n+2017=a^2;n+2019=b^2\)

\(\Rightarrow2n+4038=2b^2\)

\(\Rightarrow2b^2-a^2=2021\)

\(\Leftrightarrow\left(\sqrt{2b}-a\right)\left(\sqrt{2b}+a\right)=2021=1\cdot2021=47\cdot43\)

Tự xét nốt nha

Bình luận (0)
 Khách vãng lai đã xóa
ZZ
2 tháng 11 2019 lúc 18:49

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2019}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{1}{2019}\)

\(\Leftrightarrow2019a+2019b-ab=0\)

\(\Leftrightarrow ab-2019a-2019b=0\)

\(\sqrt{a+b}=\sqrt{a-2019}+\sqrt{b-2019}\)

\(\Leftrightarrow a+b=a-2019+b-2019+2\sqrt{\left(a-2019\right)\left(b-2019\right)}\)

\(\Leftrightarrow2\sqrt{ab-2019a-2019b+2019^2}=2\cdot2019\)

\(\Leftrightarrow2\cdot2019=2\cdot2019\) ( LUÔN OK THEO COOL KID ĐZ )

P/S:SORRY NHA.LÚC CHIỀU BẬN VÀI VIỆC NÊN KO ONL DC:(((

Bình luận (0)
 Khách vãng lai đã xóa