Những câu hỏi liên quan
NP
Xem chi tiết
AH
12 tháng 7 2018 lúc 7:42

ai tích mình mình tích lại cho

Bình luận (0)
NN
1 tháng 3 2020 lúc 20:27

k di

e he he

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
KT
1 tháng 8 2018 lúc 14:58

\(A=3+3^2+3^3+....+3^{60}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{59}+3^{60}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)

\(=\left(1+3\right)\left(3+3^3+....+3^{59}\right)\)

\(=4\left(3+3^3+....+3^{59}\right)\)\(⋮\)\(4\)

\(A=3+3^2+3^3+...+3^{60}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+....+\left(3^{58}+3^{59}+3^{60}\right)\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)

\(=\left(1+3+3^2\right)\left(3+3^4+....+3^{58}\right)\)

\(=13\left(3+3^4+...+3^{58}\right)\)\(⋮\)\(13\)

mà  (4;13) = 1

nên  A  chia hết cho 52

Bình luận (0)
ND
Xem chi tiết
CC
Xem chi tiết
MH
16 tháng 12 2015 lúc 10:25

Đặt tổng trên là A

Ta có: \(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{59}.\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{59}.3\)

\(=3.\left(2+2^3+...+2^{59}\right)\)chia hết cho 3

=> A chia hết cho 3 (Đpcm).

Bình luận (0)
TH
16 tháng 12 2015 lúc 10:25

Ta có :

2+2^2+2^3+2^4+...+2^59+2^60=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)

                                            =2x3+2^3x3+...+2^59x3

                                            =(2+2^3+...+2^59)x3

Vì 3 chia hết cho 3 nên tổng trên chia chiết cho 3 (đpcm)

Bình luận (0)
BA
Xem chi tiết
VN
Xem chi tiết
KL
12 tháng 12 2023 lúc 9:38

Số số hạng của B:

60 - 1 + 1 = 60 (số)

Do 60 chia hết cho 3 nên ta nhóm các số hạng của B thành nhóm 3 số hạng như sau:

B = 3 + 3² + 3³ + ... + 3⁶⁰

= (3 + 3² + 3³) + (3⁴ + 3⁵ + 3⁶) + ... + (3⁵⁸ + 3⁵⁹ + 3⁶⁰)

= 3.(1 + 3 + 3²) + 3⁴.(1 + 3 + 3²) + ... + 3⁵⁸.(1 + 3 + 3²)

= 3.13 + 3⁴.13 + ... + 3⁵⁸.13

= 13.(3 + 3⁴ + ... + 3⁵⁸) ⋮ 13

Vậy B ⋮ 13

Bình luận (0)
PT
Xem chi tiết
H9
30 tháng 10 2023 lúc 8:04

\(A=3^1+3^2+...+3^{60}\)

\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)

\(A=3\cdot\left(1+3+3^2\right)+3^4\cdot\left(1+3+3^2\right)+...+3^{58}\cdot\left(1+3+3^2\right)\)

\(A=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+...+3^{58}\cdot\left(1+3+9\right)\)

\(A=3\cdot13+3^4\cdot13+...+3^{58}\cdot13\)

\(A=13\cdot\left(3+3^4+...+3^{58}\right)\)

Mà: \(13\cdot\left(3+3^4+...+3^{58}\right)\) ⋮ 13

\(\Rightarrow A\) ⋮ 13

Bình luận (0)
NC
Xem chi tiết
TH
16 tháng 12 2021 lúc 11:35

undefined

Bình luận (1)
H24
Xem chi tiết
MH
24 tháng 7 2017 lúc 20:52

B = \(3+3^2+3^3+.....+3^{59}+3^{60}\)

   \(=3.\left(1+3\right)+3^3.\left(1+3\right)+....+3^{59}.\left(1+3\right)\)

    \(=3.4+3^3.4+....+3^{59}.4\)

     \(=4.\left(3+3^3+...+3^{59}\right)⋮4\)

Vậy B chia hết cho 4

Còn phần b) bạn cũng nhóm ra như trên nhưng thêm một số để có tổng là 13 

VD : ( 1+3+32)=13 đó 

bạn tự làm theo nha

k mik 

\(\)

      

Bình luận (0)