biện luận số nghiệm của phương trình trị của \(\left|-x^3+4x-3\right|=m\)
Câu 1: Giải và biện luận bất phương trình \(m^2x+m\ge2-4x\)
Câu 2: Tìm giá trị thực của tham số m để bất phương trình \(m\left(2x-1\right)\ge2x-1\) có tập nghiệm là \([1;+\infty)\)
1.
\(\Leftrightarrow\left(m^2+4\right)x\ge2-m\)
Do \(m^2+4>0\) ; \(\forall m\)
\(\Rightarrow x\ge\dfrac{2-m}{m^2+4}\)
2.
\(\Leftrightarrow2mx-2x\ge m-1\Leftrightarrow2\left(m-1\right)x\ge m-1\)
- Với \(m>1\Rightarrow m-1>0\)
\(\Rightarrow x\ge\dfrac{m-1}{2\left(m-1\right)}\Leftrightarrow x\ge\dfrac{1}{2}\) \(\Rightarrow D=[\dfrac{1}{2};+\infty)\)
- Với \(m< 1\Rightarrow m-1< 0\Rightarrow x\le\dfrac{m-1}{2\left(m-1\right)}\Leftrightarrow x\le\dfrac{1}{2}\) \(\Rightarrow D=(-\infty;\dfrac{1}{2}]\)
- Với \(m=1\Leftrightarrow0\ge0\Rightarrow D=R\)
Quan sát 3 TH ta thấy không tồn tại m để tập nghiệm của BPT là \([1;+\infty)\)
Bài 1: Tìm m để 2 phương trình có nghiệm tương đương vơi nhau
2x+3 = 0 và (2x +3)(mx-1) = 0
Bài 2: Giải và biện luận phương trình (m là hằng số)
\(\frac{m^2\left(\left(x+2\right)^2-\left(x-2\right)^2\right)}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)1)
Bài 3: Tìm các giá trị của hằng số a để phương trình vô nghiệm
\(\frac{a\left(3x-1\right)}{5}-\frac{6x-17}{4}+\frac{3x+2}{10}=0\)
Bài 4: Giải và biện luận phương trình (m là hằng số)
a) \(\frac{mx+5}{10}+\frac{x+m}{4}=\frac{m}{20}\)
b) \(\frac{x-4m}{m+1}+\frac{x-4}{m-1}=\frac{x-4m-3}{m^2-1}\)
HELP!!!!!!!!!!!!!!!!!!! >^<
biện luận nghiệm của hệ phương trình sau theo m:
\(\left\{{}\begin{matrix}\sqrt{2x}+\sqrt{3-y}=m\\\sqrt{2y}+\sqrt{3-x}=m\end{matrix}\right.\)
Phương trình tương đương
\(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)\left(x-2\right)\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)x-2m-2\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\left(m-1-m-1\right)x=-2m-4\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}-2x=-2m-4\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x=m+2\\x\ne2\end{matrix}\right.\)
Nếu m = 0 thì phương trình vô nghiệm
Nếu m ≠ 0 thì S = {m + 2}
Bài 1: Cho hệ phương trình với tham số m:
\(\hept{\begin{cases}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{cases}}\)
a) Giải và biện luận hề phương trình.
b) Tìm các giá trị của m để nghiệm của hệ phương trình là các số nguyên
c) tìm các giá trị của m để hệ phương trình có nghiệm dương duy nhất
Bài 2: Cho hệ phương trình với tham số m:
\(\hept{\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}}\)
a) Giải và biện luận hệ phương trình theo m
b) Trong trường hợp hệ có nghiệm duy nhất, tìm các giá trị của m để tích xy nhỏ nhất.
Xét phương trình \(\left(m-1\right)x-m+5=0\) ( ẩn x, tham số m )
a) Tìm m để x = -3 là nghiệm của phương trình.
b) Chứng tỏ với m = 1 phương trình vô nghiệm
c) Giải và biện luận phương trình.
a) x=3 có: 3(m-1) -m+5 =0
3m-3-m+5 =0 => m = -1
b) nếu m=1 có: (m-1)x = 0 => (m-1)x -m +5 = 0 => 4=0 vô lý
c) (m-1)x -m+5 =0 => x = (m-5)/(m-1)
+ nếu m=1 vô nghiệm
+ m khác 1 pt có nghiệm x =(m-5)/(m-1)
chỉ biện luận mỗi vậy thôi hả ???????
Có bao nhiêu giá trị nguyên của tham số m nhỏ hơn 2021 để phương trình \(4x^2+\left(3-2m\right)x+1+2\sqrt{4x^3+x}=0\) có nghiệm
ĐKXĐ: \(x\ge0\)
- Với \(x=0\) không phải nghiệm
- Với \(x>0\) , chia 2 vế của pt cho \(x\) ta được:
\(\dfrac{4x^2+1}{x}+2\sqrt{\dfrac{4x^2+1}{x}}+3-2m=0\)
Đặt \(t=\sqrt{\dfrac{4x^2+1}{x}}\ge\sqrt{\dfrac{2\sqrt{4x^2}}{x}}=2\)
Pt trở thành: \(t^2+2t+3-2m=0\)
\(\Leftrightarrow t^2+2t+3=2m\) (1)
Pt đã cho có nghiệm khi và chỉ khi (1) có nghiệm \(t\ge2\)
Xét hàm \(f\left(t\right)=t^2+2t+3\) khi \(t\ge2\)
Do \(\left\{{}\begin{matrix}a=1>0\\-\dfrac{b}{2a}=-1< 2\end{matrix}\right.\) \(\Rightarrow f\left(t\right)\) đồng biến khi \(t\ge2\)
\(\Rightarrow f\left(t\right)\ge f\left(2\right)=11\)
\(\Rightarrow\) Pt có nghiệm khi \(2m\ge11\Rightarrow m\ge\dfrac{11}{2}\)
Giải và biện luận các phương trình sau:
a) \(\left(m^2-m-6\right)x=m^2-4x+3\)
b) \(\left|m^2x-1\right|=\left|x+m\right|\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)\ne0\)
hay \(m\notin\left\{3;-2\right\}\)
Để phương trình có vô số nghiệm thì \(m-3=0\)
hay m=3
Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\m^2-4m+3< >0\end{matrix}\right.\Leftrightarrow m=-2\)
Cho PT: \(x^3+2ax^2-\left(a+1\right)^2x-2a.\left(a+1\right)^2=0\) ( a là hằng).
a) Giải và biện luận phương trình.
b) Với -1<a<1 nghiệm nào là nghiệm nhỏ nhất của phương trình
\(x^2\left(x+2a\right)-\left(a+1\right)^2\left(x+2a\right)=0\)
\(\Leftrightarrow\left(x+2a\right)\left[x^2-\left(a+1\right)^2\right]=0\)
\(\Leftrightarrow\left(x+2a\right)\left(x+a+1\right)\left(x-a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2a\\x=-a-1\\x=a+1\end{matrix}\right.\)
Pt đã cho luôn có 3 nghiệm (như trên) với mọi a
\(\left\{{}\begin{matrix}-a-1-\left(-2a\right)=a-1< 0\\\left(-a-1\right)-\left(a+1\right)=-2\left(a+1\right)< 0\\\end{matrix}\right.\)
\(\Rightarrow x=-a-1\) là nghiệm nhỏ nhất