Cho \(a,b,c,d>0\) . Chm:
\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)
1. Cho a, b, c>0. Chm: \(a^3+b^3+abc\ge ab\left(a+b+c\right)\)
2. Cho a, b, c, d>0. Chmr: \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)
1/ Ta có \(a^3+b^3\ge ab\left(a+b\right)\)
Thật vậy, BĐT tương đương:
\(a^3-a^2b+b^3-ab^2\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)
\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b\)
2/ \(P=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ca}+\frac{d^2}{ad+bd}\ge\frac{\left(a+b+c+d\right)^2}{2ac+2bd+ab+bc+cd+ad}\)
\(P\ge\frac{\left(a+c\right)^2+\left(b+d\right)^2+2\left(a+c\right)\left(b+d\right)}{2ac+2bd+ab+bc+cd+ad}\)
\(P\ge\frac{4ac+4bd+2ab+2bc+2cd+2ad}{2ac+2bd+ab+bc+cd+ad}=2\)
Dấu "=" xảy ra khi \(a=b=c=d\)
cho a,b,c,d>0 chứng minh \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{a+d}+\frac{d}{a+b}\ge2\)
lớp 6 làm thì hơi dài đấy, nếu bạn muốn thì có thể áp dụng các bất đẳng thức của lớp trên cho nhanh
Cho a ,b ,c ,d > 0 Chứng minh rằng : \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)
Áp dụng BĐT \(\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\) với a , b > 0 ta có :
\(\frac{a}{b+c}+\frac{c}{d+a}=\frac{a\left(d+a\right)+c\left(b+c\right)}{\left(b+c\right)\left(d+a\right)}=\frac{ad+a^2+bc+c^2}{\left(b+c\right)\left(d+a\right)}\ge\frac{4\left(ad+a^2+bc+c^2\right)}{\left(a+b+c+d\right)^2}\) ( 1 )
\(\frac{b}{c+d}+\frac{d}{a+b}=\frac{b\left(a+b\right)+d\left(c+d\right)}{\left(a+b\right)\left(c+d\right)}=\frac{ab+b^2+cd+d^2}{\left(a+b\right)\left(c+d\right)}\ge\frac{4\left(ab+b^2+cd+d^2\right)}{\left(a+b+c+d\right)^2}\) ( 2 )
Từ ( 1 ) và ( 2 ) cộng theo từng vế:
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{4\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\)
Cần chứng minh rằng \(\frac{\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\ge\frac{1}{2}\)
\(\Rightarrow2\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2\)
\(\Rightarrow2ab+2bc+2cd+2ad+2a^2+2b^2+2c^2+2d^2\ge a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bc+2cd+2bd\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge2ac+2bd\)
\(\Rightarrow a^2-2ac+c^2+b^2-2bd+d^2\ge0\)
\(\Rightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\left(đpcm\right)\)
Vậy \(\frac{ab+bc+cd+ad+a^2+b^2+c^2+d^2}{\left(a+b+c+d\right)^2}\ge\frac{1}{2}\)
\(\Rightarrow\frac{4\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\ge2\)
Vì \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{4\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\)
Vậy \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)
Cho a, b, c, d >0. CMR:
\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)
cho a,b,c,d > 0 . CM :
\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)
BĐT nesbit với n=4.
chứng minh nó ko hề khó đâu:
đặt VT =A đi .thì sử dụng BĐT bunhiacopxki ta có:
A[a(b+c)+b(c+d)+c(d+a)+d(a+b)]
>=(a+b+c+d)^2
giờ ta chỉ cần chứng minh:
(a+b+c+d)^2>=2a(b+c)+b(c+d)+c(d+a)+d(a...
điều này <=> với:a^2+b^2+c^2+d^2>=2ac+2bd.
diều này là hiển nhiên theo BĐT cô-si=>đpcm.MinA=2.
Áp dụng BĐT \(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\left(x;y>0\right)\)
\(\frac{a}{b+c}+\frac{c}{d+a}=\frac{a^2+ad+bc+c^2}{\left(b+c\right)\left(a+d\right)}\ge\frac{4\left(a^2+ad++bc+c^2\right)}{\left(a+b+c+d\right)^2}\left(1\right)\)
Tương tự \(\frac{b}{c+b}+\frac{d}{a+b}\ge\frac{4\left(b^2+ab+cd+d^2\right)}{\left(a+b+c+d\right)^2}\left(2\right)\)
Cộng (1) với (2) \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{4\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)}{\left(a+b+c+d\right)^2}=\text{4B}\)
Cần chứng minh \(B\ge\frac{1}{2}\), BDDT này tương đương với
\(2B\ge1\Leftrightarrow2\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)\ge\left(a+b+c+d\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2+d^2-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)
Cho a ,b ,c ,d > 0 Chứng minh rằng : \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)
Áp dụng BĐT bunhiacopxki cho 2 bộ số \(\left(\sqrt{a}.\sqrt{b+c};\sqrt{b}.\sqrt{d+c};\sqrt{c}.\sqrt{d+a};\sqrt{d}.\sqrt{a+b}\right)\)
và \(\left(\frac{\sqrt{a}}{\sqrt{b+c}};\frac{\sqrt{b}}{\sqrt{d+c}};\frac{\sqrt{c}}{\sqrt{d+a}};\frac{\sqrt{d}}{\sqrt{a+b}}\right)\), ta được:
\(\left[a\left(b+c\right)+b\left(d+c\right)+c\left(d+a\right)+d\left(a+b\right)\right]\)\(\left(\frac{a}{b+c}+\frac{b}{d+c}+\frac{c}{a+d}+\frac{d}{a+b}\right)\)\(\ge\left(a+b+c+d\right)^2\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{d+c}+\frac{c}{a+d}+\frac{d}{a+b}\)\(\ge\frac{\left(a+b+c+d\right)^2}{ab+ac+bd+bc+cd+ac+ad+bd}\)(1)
Ta có \(\left(a+b+c+d\right)^2\ge2\left(ab+ac+bc+bd+cd+ac+ad+bd\right)\)
\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)(luôn đúng)
Do đó: \(\left(a+b+c+d\right)^2\ge2\left(ab+ac+bc+bd+cd+ac+ad+bd\right)\)(2)
Từ (1) và (2) suy ra ĐPCM
Dấu "=" xảy ra khi và chỉ khi a=b=c=d
Áp dụng BĐT : \(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)với x,y > 0
Ta có : \(\frac{a}{b+c}+\frac{c}{d+a}=\frac{a^2+ad+bc+c^2}{\left(b+c\right)\left(a+d\right)}\ge\frac{4\left(a^2+ad+bc+c^2\right)}{\left(a+b+c+d\right)^2}\)
Tương tự : \(\frac{b}{c+d}+\frac{d}{a+b}\ge\frac{4\left(b^2+ab+cd+d^2\right)}{\left(a+b+c+d\right)^2}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{4\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)}{\left(a+b+c+d\right)^2}\)
Cần chứng minh : \(\frac{a^2+b^2+c^2+d^2+ad+bc+ab+cd}{\left(a+b+c+d\right)^2}\ge\frac{1}{2}\)
\(\Leftrightarrow2\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)\ge\left(a+b+c+d\right)^2\)
\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)
Dấu "=" xảy ra khi a = c ; b = d
Vậy ....
Ta có: \(\frac{a}{x}+\frac{b}{y}\ge\frac{\left(a+b\right)^2}{xy}\)
Lại có: \(\frac{a}{b+c}+\frac{d}{a+b}\)
\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{\left(a+b+c+d\right)^2}{ab+bc+bc+bd+ca+cd+da+db}\)
Ta chứng minh: \(\left(a+b+c+d\right)^2\ge2\left(ab+ac+bc+bd+ca+cd+da+db\right)\)
\(\Leftrightarrow\left(a+c\right)^2+2\left(a+c\right)\left(b+d\right)+\left(b+d\right)^2\ge2\left(a+c\right)\left(b+d\right)+4ac+4bd\)
\(\Leftrightarrow\left(a+c\right)^2+\left(b+d\right)^2\ge4ac+4bd\)(đúng)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\left(đpcm\right)\)
Dấu " = "xảy ra \(\Leftrightarrow a=b=c=d\)
Cho a, b, c, d > 0. Chứng minh:
\(\frac{a}{b+a}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)
Áp dụng BĐT Cauchy Schwarz dạng Engel và BĐT AM - GM ta có :
\(M=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\)
\(=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ac}+\frac{d^2}{ad+bd}\)
\(\ge\frac{\left(a+b+c+d\right)^2}{ad+bc+cd+ab+2ac+2bd}\)
\(=\frac{2\left(a+b+c+d\right)^2}{\left(2ad+2bc+2cd+2ab+2ac+2bd\right)+2ac+2bd}\)
\(\ge\frac{2\left(a+b+c+d\right)^2}{\left(2ad+2bc+2cd+2ab+2ac+2bd\right)+a^2+b^2+c^2+^2}\)
\(=\frac{2\left(a+b+c+d\right)^2}{\left(a+b+c+d\right)^2}=2\)
Dấu "=" xảy ra khi a = b = c = d
Chúc bạn học tốt !!!
Bài toán :
Cho a, b, c, d > 0
CMR : \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)
a)
+ Xét ∆AHB và ∆DBH có :
BH chung
góc AHB = góc DBH = 900
AH = DB
=> ∆AHB = ∆DHB ( c.g.c )
=> ĐPCM
b) Vì ∆AHB = ∆DHB ( cmt )
=> góc ABH = góc DHB
và chúng ở vị trí SLT
=> AB / / DH ( đpcm )
c) Ta có :
góc ABH + góc BAH = 900 ( vì ∆ ABH vuông tại H )
Lại có : góc ABH + góc ACB = 900 ( vì ∆ABC vuông tại A )
=> góc BAH = góc ACB = 350
Cho a,b,c,d là các số thực ko âm thỏa mãn (a+b+c)(b+c+d)(c+d+a)(d+a+b)>0
chứng minh rằng \(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{a+d+c}}+\sqrt{\frac{c}{d+a+b}}+\sqrt{\frac{d}{b+a+c}}\ge2\)
\(VT^2\ge\left(1+1+1+1\right)\left(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{d+a+b}+\frac{d}{b+a+c}\right)\ge4.1=4\)
=> VT >/ 2
Dễ CM được \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{d+a+b}+\frac{d}{b+a+c}\ge1\)
\(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{c+d+a}}+\sqrt{\frac{c}{d+a+b}}+\sqrt{\frac{d}{a+b+c}}\)
\(=\frac{a}{\sqrt{a\left(b+c+d\right)}}+\frac{b}{\sqrt{b\left(c+d+a\right)}}+\frac{c}{\sqrt{c\left(d+a+b\right)}}+\frac{d}{\sqrt{d\left(a+b+c\right)}}\)
\(\ge\frac{a}{\frac{a+b+c+d}{2}}+\frac{b}{\frac{b+c+d+a}{2}}+\frac{c}{\frac{a+b+c+d}{2}}+\frac{d}{\frac{a+b+c+d}{2}}=2\)
Dấu '' = '' xảy ra khi a = b + c+ d
b = c+d+a
c = b+a+d
d = a+b+c
Hình như ko có a ; b; c ;d