Violympic toán 9

PB

1. Cho a, b, c>0. Chm: \(a^3+b^3+abc\ge ab\left(a+b+c\right)\)

2. Cho a, b, c, d>0. Chmr: \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)

NL
11 tháng 11 2019 lúc 10:25

1/ Ta có \(a^3+b^3\ge ab\left(a+b\right)\)

Thật vậy, BĐT tương đương:

\(a^3-a^2b+b^3-ab^2\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

Dấu "=" xảy ra khi \(a=b\)

2/ \(P=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ca}+\frac{d^2}{ad+bd}\ge\frac{\left(a+b+c+d\right)^2}{2ac+2bd+ab+bc+cd+ad}\)

\(P\ge\frac{\left(a+c\right)^2+\left(b+d\right)^2+2\left(a+c\right)\left(b+d\right)}{2ac+2bd+ab+bc+cd+ad}\)

\(P\ge\frac{4ac+4bd+2ab+2bc+2cd+2ad}{2ac+2bd+ab+bc+cd+ad}=2\)

Dấu "=" xảy ra khi \(a=b=c=d\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
PB
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
VV
Xem chi tiết
H24
Xem chi tiết
TQ
Xem chi tiết
AJ
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết