Những câu hỏi liên quan
NN
Xem chi tiết
H24
22 tháng 11 2017 lúc 11:44

n^2+n+6=k^2

4n^2+4n+24=4k^2

(2n+1)^2-(2k)^2=-23

(2n+1-2k)(2n+1+2k)=-23

Đến đây bạn tự giải tiếp nhé

Bình luận (0)
VN
Xem chi tiết
NL
29 tháng 10 2019 lúc 16:38

\(M=n^2\left(n^2-n+13\right)\)

Để \(M\) là SCP \(\Leftrightarrow n^2-n+13\) là SCP

\(\Leftrightarrow n^2-n+13=k^2\)

\(\Leftrightarrow4n^2-4n+52=k^2\)

\(\Leftrightarrow\left(2n-1\right)^2+51=k^2\)

\(\Leftrightarrow\left(k-2n+1\right)\left(k+2n-1\right)=51\)

Phương trình ước số cơ bản, bạn tự giải

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
AH
30 tháng 9 2024 lúc 19:56

Lời giải:

$A=n^4+3n^3+3n^2=n^2(n^2+3n+3)$

Để $A$ là scp thì $n^2+3n+3$ là scp.

Đặt $n^2+3n+3=x^2$ với $x$ tự nhiên.

$\Rightarrow 4n^2+12n+12=4x^2$

$\Rightarrow (2n+3)^2+3=4x^2$

$\Rightarrow 3=(2x)^2-(2n+3)^2=(2x-2n-3)(2x+2n+3)$

Đến đây là dạng PT tích cơ bản rồi. Bạn có thể tự xét TH để giải.

Bình luận (0)
H24
Xem chi tiết
LM
Xem chi tiết
NH
5 tháng 3 2017 lúc 21:43

-6;(-1);5 

Bình luận (0)
PV
Xem chi tiết
TP
Xem chi tiết
KG
Xem chi tiết
NT
2 tháng 8 2023 lúc 17:47

\(A=n^4+2n^3+2n^2+n+7\)

\(\Rightarrow A=n^4+2n^3+n^2+n^2+n+7\)

\(\Rightarrow A=\left(n^2+n\right)^2+n^2+n+\dfrac{1}{4}+\dfrac{27}{4}\)

\(\Rightarrow A=\left(n^2+n\right)^2+\left(n+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\)

\(\Rightarrow A>\left(n^2+n\right)^2\left(1\right)\)

Ta lại có :

\(\left(n^2+n+1\right)^2-A\)

\(=n^4+n^2+1+2n^3+2n^2+2n-n^4-2n^3-2n^2-n-7\)

\(=n^2+n-6\)

Để \(n^2+n-6>0\)

\(\Leftrightarrow\left(n+3\right)\left(n-2\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}n< -3\\n>2\end{matrix}\right.\) \(\Rightarrow\left(n^2+n+1\right)^2>A\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\left(n^2+n\right)^2< A< \left(n^2+n+1\right)^2\)

Nên A không phải là số chính phương

Xét \(-3\le n\le2\)

Để A là số chính phương

\(\Rightarrow n\in\left\{-3;-2;-1;0;1;2\right\}\)

Thay các giá trị n vào A ta thấy với \(n=-3;n=2\) ta đều được \(A=49\) là số chính phương

\(\Rightarrow\left[{}\begin{matrix}n=-3\\n=2\end{matrix}\right.\) thỏa mãn đề bài

Bình luận (0)
H24
Xem chi tiết