Những câu hỏi liên quan
TY
Xem chi tiết
LH
6 tháng 7 2021 lúc 7:36

1.Ý A

\(P=cos^4x-sin^4x=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)=cos2x\)

2. Ý B

\(D=sin\left(\dfrac{5\pi}{2}-\alpha\right)+cos\left(13\pi+\alpha\right)-3sin\left(\alpha-5\pi\right)\)

\(=sin\left(2\pi+\dfrac{\pi}{2}-\alpha\right)+cos\left(\pi+\alpha+12\pi\right)-3sin\left(\alpha+\pi-6\pi\right)\)

\(=sin\left(\dfrac{\pi}{2}-\alpha\right)+cos\left(\pi+\alpha\right)-3sin\left(\alpha+\pi\right)\)

\(=cos\alpha-cos\alpha+3sin\alpha=3sin\alpha\)

Bình luận (0)
JE
Xem chi tiết
TL
1 tháng 8 2020 lúc 21:55

\(\text{a) }cos^2x+sin2x-1=0\\ \Leftrightarrow2sinx\cdot cosx-sin^2x=0\\ \Leftrightarrow sinx\left(2cosx-sinx\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=2cosx\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=0\\tanx=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=a\pi\\x=arctan\left(2\right)+b\pi\end{matrix}\right.\)

\(\text{b) }\sqrt{3}sin2x+cos^4x-sin^4x=\sqrt{2}\\ \Leftrightarrow\sqrt{3}sin2x+\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)=\sqrt{2}\\ \Leftrightarrow\frac{\sqrt{3}}{2}\cdot sin2x+\frac{1}{2}\cdot cos2x=\frac{\sqrt{2}}{2}\\ \Leftrightarrow cos\frac{\pi}{6}\cdot sin2x+sin\frac{\pi}{6}\cdot cos2x=\frac{\sqrt{2}}{2}\\ \Leftrightarrow cos\frac{\pi}{6}\cdot sin2x+sin\frac{\pi}{6}\cdot cos2x=\frac{\sqrt{2}}{2}\\ \Leftrightarrow sin\left(2x+\frac{\pi}{6}\right)=sin\frac{\pi}{4}\\ \\ \Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{6}=\frac{\pi}{4}+a2\pi\\2x+\frac{\pi}{6}=\frac{3\pi}{4}+b2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{24}+a\pi\\x=\frac{7\pi}{24}+b\pi\end{matrix}\right.\)

\(c\text{) }cos^2x-sin^2x=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\\ \Leftrightarrow cos^2x-sin^2x=\sqrt{2}\left(sinx\cdot\frac{\sqrt{2}}{2}+cosx\cdot\frac{\sqrt{2}}{2}\right)\\ \Leftrightarrow\left(cosx-sinx\right)\left(sinx+cosx\right)=sinx+cosx\\ \Leftrightarrow\left[{}\begin{matrix}cosx-sinx=1\\sinx=-cosx\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}cos^2x+\left(cosx-1\right)^2=1\\tanx=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\\tanx=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+a\pi\\x=b2\pi\\x=\frac{3\pi}{4}=c\pi\end{matrix}\right.\)

Bình luận (0)
TL
1 tháng 8 2020 lúc 22:32

\(d\text{) }4\left(sin^4x+cos^4x\right)+\sqrt{3}sin4x=2\\ \Leftrightarrow4\left(1-2sin^2x\cdot cos^2x\right)+\sqrt{3}sin4x=2\\ \Leftrightarrow-8sin^2x\cdot cos^2x+\sqrt{3}sin4x=-2\\ \Leftrightarrow-2sin^22x+\sqrt{3}sin4x=-2\\ \Leftrightarrow cos4x-1+\sqrt{3}sin4x=-2\\ \Leftrightarrow\frac{1}{2}cos4x+\frac{\sqrt{3}}{2}sin4x=-\frac{1}{2}\\ \Leftrightarrow sin\frac{\pi}{6}\cdot cos4x+cos\frac{\pi}{6}\cdot sin4x=-\frac{1}{2}\\ \Leftrightarrow sin\left(4x+\frac{\pi}{6}\right)=sin\frac{-\pi}{6}\\ \Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{6}=\frac{-\pi}{6}+a2\pi\\4x+\frac{\pi}{6}=\frac{7\pi}{6}+b2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-\pi}{12}+\frac{a\pi}{2}\\x=\frac{\pi}{4}+\frac{b\pi}{2}\end{matrix}\right.\)

\(e\text{) }4sinx\cdot cosx\cdot cos2x+cos4x=\sqrt{2}\\ \Leftrightarrow sin4x+cos4x=\sqrt{2}\\ \Leftrightarrow sin4x\cdot\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}cos4x=1\\ \Leftrightarrow sin4x\cdot cos\frac{\pi}{4}+cos4x\cdot sin\frac{\pi}{4}=1\\ \Leftrightarrow sin\left(4x+\frac{\pi}{4}\right)=1=sin\frac{\pi}{2}\\ \Leftrightarrow4x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\\ \Leftrightarrow x=\frac{\pi}{16}+\frac{k\pi}{2}\)

Bình luận (0)
LY
Xem chi tiết
NL
6 tháng 8 2021 lúc 15:56

\(cos^3xsinx-sin^3xcosx=sinx.cosx\left(cos^2x-sin^2x\right)=\dfrac{1}{2}sin2x.cos2x=\dfrac{1}{4}sin4x\)

\(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=1-\dfrac{1}{2}\left(2sinx.cosx\right)^2=1-\dfrac{1}{2}sin^22x\)

\(=1-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2}cos4x\right)=\dfrac{3}{4}+\dfrac{1}{4}cos4x=\dfrac{1}{4}\left(3+cos4x\right)\)

Bình luận (0)
TT
Xem chi tiết
SK
Xem chi tiết
NH
17 tháng 5 2017 lúc 16:59

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

Bình luận (0)
NM
Xem chi tiết
NL
5 tháng 10 2021 lúc 20:46

\(cos^4x-sin^4x=sin3x+cos4x\)

\(\Leftrightarrow\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right)=sin3x+cos4x\)

\(\Leftrightarrow cos2x=sin3x+cos4x\)

\(\Leftrightarrow cos4x-cos2x+sin3x=0\)

\(\Leftrightarrow-2sin3x.sinx+sin3x=0\)

\(\Leftrightarrow sin3x\left(1-2sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{3}\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow x=\left\{0;\dfrac{\pi}{3};\dfrac{2\pi}{3};\pi;\dfrac{\pi}{6};\dfrac{5\pi}{6}\right\}\)

\(\Rightarrow\sum x=3\pi\)

Bình luận (0)
ND
Xem chi tiết
NL
5 tháng 9 2020 lúc 19:58

a/

\(\Leftrightarrow\left(sin^2\frac{x}{3}+cos^2\frac{x}{3}\right)^2-2sin^2\frac{x}{3}.cos^2\frac{x}{3}=\frac{5}{8}\)

\(\Leftrightarrow1-\frac{1}{2}sin^2\frac{2x}{3}=\frac{5}{8}\)

\(\Leftrightarrow1-\frac{1}{4}\left(1-cos\frac{4x}{3}\right)=\frac{5}{8}\)

\(\Leftrightarrow cos\frac{4x}{3}=-\frac{1}{2}\)

\(\Leftrightarrow\frac{4x}{3}=\pm\frac{2\pi}{3}+k2\pi\)

\(\Leftrightarrow x=\pm\frac{\pi}{2}+\frac{k3\pi}{2}\)

Bình luận (0)
NL
5 tháng 9 2020 lúc 20:01

b/

\(\Leftrightarrow4\left(sin^2x+cos^2x\right)^2-8sin^2x.cos^2x+\sqrt{3}sin4x=2\)

\(\Leftrightarrow4-8sin^2x.cos^2x+\sqrt{3}sin4x=2\)

\(\Leftrightarrow-2sin^22x+\sqrt{3}sin4x=-2\)

\(\Leftrightarrow cos4x+\sqrt{3}sin4x=-1\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin4x+\frac{1}{2}cos4x=-\frac{1}{2}\)

\(\Leftrightarrow sin\left(4x+\frac{\pi}{6}\right)=-\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{6}=-\frac{\pi}{6}+k2\pi\\4x+\frac{\pi}{6}=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{12}+\frac{k\pi}{2}\\x=\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\)

Bình luận (0)
NL
5 tháng 9 2020 lúc 20:08

c/

\(\left(\frac{1+cos2x}{2}\right)^2+\left(\frac{1-cos2x}{2}\right)^3=cos2x\)

\(\Leftrightarrow-cos^32x+5cos^22x-7cos2x+3=0\)

\(\Leftrightarrow\left(3-cos2x\right)\left(cos2x-1\right)^2=0\)

\(\Leftrightarrow cos2x=1\)

\(\Leftrightarrow x=k\pi\)

d/

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=cos4x\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x=cos4x\)

\(\Leftrightarrow1-\frac{3}{8}\left(1-cos4x\right)=cos4x\)

\(\Leftrightarrow cos4x=1\)

\(\Leftrightarrow x=\frac{k\pi}{2}\)

Bình luận (0)
HN
Xem chi tiết
QA
Xem chi tiết